301 research outputs found

    Wideband Fast Kernel-Independent Modeling of Large Multiscale Structures Via Nested Equivalent Source Approximation

    Get PDF
    We propose a wideband fast kernel-independent modeling of large multiscale structures; we employ a nested equivalent source approximation (NESA) to compress the dense system matrix. The NESA was introduced by these authors for low and moderate frequency problems (smaller than a few wavelengths); here, we introduce a high-frequency NESA algorithm, and propose a hybrid version with extreme wideband properties. The equivalent sources of the wideband NESA (WNESA) are obtained by an inverse-source process, enforcing equivalence of radiated fields on suitably defined testing surfaces. In the low-frequency region, the NESA is used unmodified, with a complexity of mathcal{O}(N) . In the high-frequency region, in order to obtain a fixed rank matrix compression, we hierarchically divide the far coupling space into pyramids with angles related to the peer coupling group size, and the NESA testing surfaces are defined as the boundaries of the pyramids. This results in a directional nested low-rank (fixed rank) approximation with mathcal{O}(Nlog {N}) computational complexity that is kernel independent; overall, the approach yields wideband fast solver for the modeling of large structures that inherits the efficiency and accuracy of low-frequency NESA for multiscale problems. Numerical results and discussions demonstrate the validity of the proposed work

    Theory and implementation of H\mathcal{H}-matrix based iterative and direct solvers for Helmholtz and elastodynamic oscillatory kernels

    Get PDF
    In this work, we study the accuracy and efficiency of hierarchical matrix (H\mathcal{H}-matrix) based fast methods for solving dense linear systems arising from the discretization of the 3D elastodynamic Green's tensors. It is well known in the literature that standard H\mathcal{H}-matrix based methods, although very efficient tools for asymptotically smooth kernels, are not optimal for oscillatory kernels. H2\mathcal{H}^2-matrix and directional approaches have been proposed to overcome this problem. However the implementation of such methods is much more involved than the standard H\mathcal{H}-matrix representation. The central questions we address are twofold. (i) What is the frequency-range in which the H\mathcal{H}-matrix format is an efficient representation for 3D elastodynamic problems? (ii) What can be expected of such an approach to model problems in mechanical engineering? We show that even though the method is not optimal (in the sense that more involved representations can lead to faster algorithms) an efficient solver can be easily developed. The capabilities of the method are illustrated on numerical examples using the Boundary Element Method

    Complexity Analysis of a Fast Directional Matrix-Vector Multiplication

    Full text link
    We consider a fast, data-sparse directional method to realize matrix-vector products related to point evaluations of the Helmholtz kernel. The method is based on a hierarchical partitioning of the point sets and the matrix. The considered directional multi-level approximation of the Helmholtz kernel can be applied even on high-frequency levels efficiently. We provide a detailed analysis of the almost linear asymptotic complexity of the presented method. Our numerical experiments are in good agreement with the provided theory.Comment: 20 pages, 2 figures, 1 tabl

    Computationally efficient boundary element methods for high-frequency Helmholtz problems in unbounded domains

    Get PDF
    This chapter presents the application of the boundary element method to high-frequency Helmholtz problems in unbounded domains. Based on a standard combined integral equation approach for sound-hard scattering problems we discuss the discretization, preconditioning and fast evaluation of the involved operators. As engineering problem, the propagation of high-intensity focused ultrasound fields into the human rib cage will be considered. Throughout this chapter we present code snippets using the open-source Python boundary element software BEM++ to demonstrate the implementation

    An accurate boundary value problem solver applied to scattering from cylinders with corners

    Full text link
    In this paper we consider the classic problems of scattering of waves from perfectly conducting cylinders with piecewise smooth boundaries. The scattering problems are formulated as integral equations and solved using a Nystr\"om scheme where the corners of the cylinders are efficiently handled by a method referred to as Recursively Compressed Inverse Preconditioning (RCIP). This method has been very successful in treating static problems in non-smooth domains and the present paper shows that it works equally well for the Helmholtz equation. In the numerical examples we specialize to scattering of E- and H-waves from a cylinder with one corner. Even at a size kd=1000, where k is the wavenumber and d the diameter, the scheme produces at least 13 digits of accuracy in the electric and magnetic fields everywhere outside the cylinder.Comment: 19 pages, 3 figure
    • …
    corecore