122 research outputs found

    Telecommunications for a deregulated power industry

    Get PDF
    Telecommunication plays a very important role in the effective monitoring and control of the power grid. Deregulation of the US power industry has enabled utilities to explore various communication options and advanced technologies. Utilities are increasingly investing in distributed resources, dynamic real-time monitoring, automated meter reading, and value added services like home energy management systems and broadband access for its customers. Telecommunication options like power line communications (PLC) and satellites are fast replacing legacy telephone and microwave systems in the US.;The objective of this thesis is to study the communication options that are available for utilities today. Phasor measurement units (PMUs) are analyzed in detail and communication delays due to the use of PMUs in wide area measurement systems (WAMS) are also studied. The highlight of this thesis is a close look at the characteristics of the power line channel by presenting a power line channel model and the use of digital modulation techniques like SS and OFDM, which help overcome the effects of such a hostile medium of communication. (Abstract shortened by UMI.)

    New Cost-effective Method for Monitoring Wideband Disturbances at Secondary Substation

    Get PDF
    Modern societies are becoming increasingly dependent on reliable and continuous supply of high quality electricity. Maintaining continuous supply of electricity round the clock depends heavily on the efficient and reliable operation of distribution system components. On the other hand, large-scale power outages are increasing in overhead lines due to extreme weather condition i.e. heavy storms and snowfalls. Distribution network operators (DNOs) are facing considerable network investments in the near future due to the ongoing trend of cabling. At the same time, the long fault location and repair times in aging cable networks set new demands for condition monitoring and fault prevention through preventive maintenance. Partial discharge (PD) monitoring is an excellent way to determine the overall health of the MV components and detect developing faults in underground cables. On the other hand, the proliferation of e.g. distributed generation and electronic loads poses new challenges to maintain the power quality (PQ) in distribution networks. Utilizing network condition and power quality information together would improve the allocation accuracy and benefit-cost ratio of network maintenance and renewals. Thus, the importance of condition monitoring is increasing in the distribution networks to facilitate online diagnostic, preventive maintenance, forecasting risk of failure and minimizing outages.Secondary substations seldom have any remotely readable measurement and control units and the existing measurements in the network are limited to only power quality and MV fault management due to low sampling rate (some kHz). There are also commercially available devices for PD monitoring of underground cables but those capable of continuous on-line monitoring are still relatively expensive and as such, more suited for critical and high risk location. Currently, there are no cost-effective wideband multifunction devices suitable for continuous on-line PD monitoring, PQ monitoring, disturbance recording (DR) and fault location at secondary substation.This thesis proposes a novel cost-effective secondary substation monitoring solution which includes the monitoring system as well as the monitoring concept to measure various quantities at LV and MV side of secondary substation. Additionally, it can be used in fundamental frequency metering and can be used as disturbance recorder as well. It also locates earth fault which is demonstrated as an application of disturbance recording function. The architecture of the monitoring system includes high frequency current transformer (HFCT) sensors for current measurements at MV side, resistive divider for voltage measurements at LV side, filter & amplifier unit and multichannel data acquisition & processing unit. HFCT sensors not only measure PD but also PQ at the MV side of secondary substation, which is a novel approach. Hence, no sensor having expensive high voltage insulations is needed, which makes the solution cost-effective and reliable. The overall concept is tested and verified through prototype systems in the laboratory and in the field. Secondary substation monitoring solution provides a platform on which various monitoring, control and network automation applications can be built

    Communications protocols for wireless sensor networks in perturbed environment

    Get PDF
    This thesis is mainly in the Smart Grid (SG) domain. SGs improve the safety of electrical networks and allow a more adapted use of electricity storage, available in a limited way. SGs also increase overall energy efficiency by reducing peak consumption. The use of this technology is the most appropriate solution because it allows more efficient energy management. In this context, manufacturers such as Hydro-Quebec deploy sensor networks in the nerve centers to control major equipment. To reduce deployment costs and cabling complexity, the option of a wireless sensor network seems the most obvious solution. However, deploying a sensor network requires in-depth knowledge of the environment. High voltages substations are strategic points in the power grid and generate impulse noise that can degrade the performance of wireless communications. The works in this thesis are focused on the development of high performance communication protocols for the profoundly disturbed environments. For this purpose, we have proposed an approach based on the concatenation of rank metric and convolutional coding with orthogonal frequency division multiplexing. This technique is very efficient in reducing the bursty nature of impulsive noise while having a quite low level of complexity. Another solution based on a multi-antenna system is also designed. We have proposed a cooperative closed-loop coded MIMO system based on rank metric code and max−dmin precoder. The second technique is also an optimal solution for both improving the reliability of the system and energy saving in wireless sensor networks

    Noise Sources, Effects and Countermeasures in Narrowband Power-Line Communications Networks: A Practical Approach

    Get PDF
    The integration of Distributed Generation, Electric Vehicles, and storage without compromising the quality of the power delivery requires the deployment of a communications overlay that allows monitoring and controlling low voltage networks in almost real time. Power Line Communications are gaining momentum for this purpose since they present a great trade-off between economic and technical features. However, the power lines also represent a harsh communications medium which presents different problems such as noise, which is indeed affected by Distributed Generation, Electric Vehicles, and storage. This paper provides a comprehensive overview of the types of noise that affects Narrowband Power Line Communications, including normative noises, noises coming from common electronic devices measured in actual operational power distribution networks, and noises coming from photovoltaic inverters and electric vehicle charging spots measured in a controlled environment. The paper also reviews several techniques to mitigate the effects of noise, paying special attention to passive filtering, as for being one of the most widely used solution to avoid this kind of problems in the field. In addition, the paper presents a set of tests carried out to evaluate the impact of some representative noises on Narrowband Power Line Communications network performance, as well as the effectiveness of different passive filter configurations to mitigate such an impact. In addition, the considered sources of noise can also bring value to further improve PLC communications in the new scenarios of the Smart Grid as an input to theoretical models or simulations.This work has been partly funded by the Spanish Ministry of Economy and Competitiveness through the National Program for Research Aimed at the Challenges of Society under the project OSIRIS (RTC-2014-1556-3) and through the network of excellence REDYD2050 (ENE2015-70032-REDT)

    Noise Sources, Effects and Countermeasures in Narrowband Power-Line Communications Networks: A Practical Approach

    Get PDF
    The integration of Distributed Generation, Electric Vehicles, and storage without compromising the quality of the power delivery requires the deployment of a communications overlay that allows monitoring and controlling low voltage networks in almost real time. Power Line Communications are gaining momentum for this purpose since they present a great trade-off between economic and technical features. However, the power lines also represent a harsh communications medium which presents different problems such as noise, which is indeed affected by Distributed Generation, Electric Vehicles, and storage. This paper provides a comprehensive overview of the types of noise that affects Narrowband Power Line Communications, including normative noises, noises coming from common electronic devices measured in actual operational power distribution networks, and noises coming from photovoltaic inverters and electric vehicle charging spots measured in a controlled environment. The paper also reviews several techniques to mitigate the effects of noise, paying special attention to passive filtering, as for being one of the most widely used solution to avoid this kind of problems in the field. In addition, the paper presents a set of tests carried out to evaluate the impact of some representative noises on Narrowband Power Line Communications network performance, as well as the effectiveness of different passive filter configurations to mitigate such an impact. In addition, the considered sources of noise can also bring value to further improve PLC communications in the new scenarios of the Smart Grid as an input to theoretical models or simulations.This work has been partly funded by the Spanish Ministry of Economy and Competitiveness through the National Program for Research Aimed at the Challenges of Society under the project OSIRIS (RTC-2014-1556-3) and through the network of excellence REDYD2050 (ENE2015-70032-REDT)

    Survey on Wi-Fi and Cellular Communication Technology for Advanced Metering Infrastructure (AMI) in a Developing Economy

    Get PDF
    Traditional energy meters have suffered from a lack of automated analysis and inaccuracy in reading energy consumption, which has brought about smart metering systems. Developing economies such as in Africa. still experience a setback in electricity monitoring and load distribution because of existing traditional meter systems in use. Communication technologies play an important role to improve the monitoring of energy consumption and ensure a road map toward a smart grid. This paper reviews communication technologies used for Advanced Metering Infrastructure (AMI) emphasizing Wi-Fi and Cellular technologies. Metrics used to evaluate their performance include cost, energy efficiency, coverage, deployment, latency, payload, and scalability. The review presents a benchmark for research on AMI communication technologies in developing economies. When adopted, the expected AMI benefits are reduced energy theft, cost efficiency, real-time analysis, security, and safety of energy supply in developing economies
    corecore