4,274 research outputs found

    W-Band GaAs HEMT MMIC Subharmonically Pumped Diode Mixers with 20 GHz IF Bandwidth

    Get PDF
    Two subharmonically pumped (SHP) diode mixers are designed for wideband W-band RF frequencies, fixed LO frequency operation. These mixers are fabricated on a 4-mil substrate using 0.1- µµµµm GaAs MMIC process. Both simulation and test results show that the mixers are with 12.25 and 11.75 dB average conversion losses, respectively. Both mixers have IF bandwidth wider than 20 GHz. The conversion loss flatness of the symmetric circuit is within ±1.25 dB. To our knowledge, these are the state-of-the-art result on low-conversion-loss wideband MMIC SHP diode mixers

    Next Generation M2M Cellular Networks: Challenges and Practical Considerations

    Get PDF
    In this article, we present the major challenges of future machine-to-machine (M2M) cellular networks such as spectrum scarcity problem, support for low-power, low-cost, and numerous number of devices. As being an integral part of the future Internet-of-Things (IoT), the true vision of M2M communications cannot be reached with conventional solutions that are typically cost inefficient. Cognitive radio concept has emerged to significantly tackle the spectrum under-utilization or scarcity problem. Heterogeneous network model is another alternative to relax the number of covered users. To this extent, we present a complete fundamental understanding and engineering knowledge of cognitive radios, heterogeneous network model, and power and cost challenges in the context of future M2M cellular networks

    Enhancing Digital Controllability in Wideband RF Transceiver Front-Ends for FTTx Applications

    Get PDF
    Enhancing the digital controllability of wideband RF transceiver front-ends helps in widening the range of operating conditions and applications in which such systems can be employed. Technology limitations and design challenges often constrain the extensive adoption of digital controllability in RF front-ends. This work focuses on three major aspects associated with the design and implementation of a digitally controllable RF transceiver front-end for enhanced digital control. Firstly, the influence of the choice of semiconductor technology for a system-on-chip integration of digital gain control circuits are investigated. The digital control of gain is achieved by utilizing step attenuators that consist of cascaded switched attenuation stages. A design methodology is presented to evaluate the influence of the chosen technology on the performance of the three conventionally used switched attenuator topologies for desired attenuation levels, and the constraints that the technology suitable for high amplification places on the attenuator performance are examined. Secondly, a novel approach to the integrated implementation of gain slope equalization is presented, and the suitability of the proposed approach for integration within the RF front-end is verified. Thirdly, a sensitivity-aware implementation of a peak power detector is presented. The increased employment of digital gain control also increases the requirements on the sensitivity of the power detector employed for adaptive power and gain control. The design, implementation, and measurement results of a state-of-the-art wideband power detector with high sensitivity and large dynamic range are presented. The design is optimized to provide a large offset cancellation range, and the influence of offset cancellation circuits on the sensitivity of the power detector is studied. Moreover, design considerations for high sensitivity performance of the power detector are investigated, and the noise contributions from individual sub-circuits are evaluated. Finally, a wideband RF transceiver front-end is realized using a commercially available SiGe BiCMOS technology to demonstrate the enhancements in the digital controllability of the system. The RF front-end has a bandwidth of 500 MHz to 2.5 GHz, an input dynamic range of 20 dB, a digital gain control range larger than 30 dB, a digital gain slope equalization range from 1.49 dB/GHz to 3.78 dB/GHz, and employs a power detector with a sensitivity of -56 dBm and dynamic range of 64 dB. The digital control in the RF front-end is implemented using an on-chip serial-parallel-interface (SPI) that is controlled by an external micro-controller. A prototype implementation of the RF front-end system is presented as part of an RFIC intended for use in optical transceiver modules for fiber-to-the-x applications

    A Wideband 77-GHz, 17.5-dBm Fully Integrated Power Amplifier in Silicon

    Get PDF
    A 77-GHz, +17.5 dBm power amplifier (PA) with fully integrated 50-Ω input and output matching and fabricated in a 0.12-µm SiGe BiCMOS process is presented. The PA achieves a peak power gain of 17 dB and a maximum single-ended output power of 17.5 dBm with 12.8% of power-added efficiency (PAE). It has a 3-dB bandwidth of 15 GHz and draws 165 mA from a 1.8-V supply. Conductor-backed coplanar waveguide (CBCPW) is used as the transmission line structure resulting in large isolation between adjacent lines, enabling integration of the PA in an area of 0.6 mm^2. By using a separate image-rejection filter incorporated before the PA, the rejection at IF frequency of 25 GHz is improved by 35 dB, helping to keep the PA design wideband

    A 0.2-to-2.0GHz 65nm CMOS Receiver without LNA achieving >11dBm IIP3 and <6.5 dB NF

    Get PDF
    Spurious-free dynamic range (SFDR) is a key specification of radio receivers and spectrum analyzers, characterizing the maximum distance between signal and noise+distortion. SFDR is limited by the linearity (intercept point IIP3 mostly, sometimes IIP2) and the noise floor. As receivers already have low noise figure (NF) there is more room for improving the SFDR by increasing the linearity. As there is a strong relation between distortion and voltage swing, it is challenging to maintain or even improve linearity intercept points in future CMOS processes with lower supply voltages. Circuits can be linearized with feedback but loop gain at RF is limited [1]. Moreover, after LNA gain, mixer linearity becomes even tougher. If the amplification is postponed to IF, much more loop gain is available to linearize the amplifier. This paper proposes such an LNA-less mixer-first receiver. By careful analysis and optimization of a passive mixer core [2,3] for low conversion loss and low noise folding it is shown that it is possible to realize IIP3≫11dBm and NF≪6.5dB, i.e. a remarkably high SFDR≫79dB in 1MHz bandwidth over a decade of RF frequencies

    Analog IC Design at the University of Twente

    Get PDF
    This article describes some recent research results from the IC Design group of the University of Twente, located in Enschede, The Netherlands.\ud \ud Our research focuses on analog CMOS circuit design with emphasis on high frequency and broadband circuits. With the trend of system integration in mind, we try to develop new circuit techniques that enable the next steps in system integration in nanometer CMOS technology. Our research funding comes from industry, as well as from governmental organizations. We aim to find fundamental solutions for practical problems of integrated circuits realized in industrial Silicon technologies.\ud \ud CMOS IC technology is dictated by optimal cost and performance of digital circuits and is certainly not optimized for nice analog behavior. As analog designers, we do not have the illusion to be able to change the CMOS technology, so we have to "live with it" and solve the problems by design. In this article several examples will be shown, where problematic analog behavior, such as noise and distortion, can be tackled with new circuit design techniques. These circuit techniques are developed in such a way that they do benefit from the modern technology and thus enable further integration. This way we can improve various analog building blocks for wireless, wire-line and optical communication. Below some examples are given.\ud \u

    CIRCUIT MODULES FOR BROADBAND CMOS SIX-PORT SYSTEMS

    Get PDF
    This dissertation investigates four circuit modules used in a CMOS integrated six-port measurement system. The first circuit module is a wideband power source generator, which can be implemented with a voltage controlled ring oscillator. The second circuit module is a low-power 0.5 GHz - 20.5 GHz power detector with an embedded amplifier and a wideband quasi T-coil matching network. The third circuit module is a six-port circuit, which can be implemented with distributed or lumped- lement techniques. The fourth circuit module is the phase sifter used as calibration loads. The theoretical analysis, circuit design, simulated or experimental verifications of each circuit module are also included

    Spread spectrum communication link using surface wave devices

    Get PDF
    A fast lock-up, 8-MHz bandwidth 8,000 bit per second data rate spread spectrum communication link breadboard is described that is implemented using surface wave devices as the primary signal generators and signal processing elements. It uses surface wave tapped delay lines in the transmitter to generate the signals and in the receiver to detect them. The breadboard provides a measured processing gain for Gaussian noise of 31.5 dB which is within one dB of the theoretical optimum. This development demonstrates that spread spectrum receivers implemented with surface wave devices have sensitivities and complexities comparable to those of serial correlation receivers, but synchronization search times which are two to three orders of magnitude smaller

    Equalization of Third-Order Intermodulation Products in Wideband Direct Conversion Receivers

    Get PDF
    This paper reports a SAW-less direct-conversion receiver which utilizes a mixed-signal feedforward path to regenerate and adaptively cancel IM3 products, thus accomplishing system-level linearization. The receiver system performance is dominated by a custom integrated RF front end implemented in 130-nm CMOS and achieves an uncorrected out-of-band IIP3 of -7.1 dBm under the worst-case UMTS FDD Region 1 blocking specifications. Under IM3 equalization, the receiver achieves an effective IIP3 of +5.3 dBm and meets the UMTS BER sensitivity requirement with 3.7 dB of margin

    System-level design and RF front-end implementation for a 3-10ghz multiband-ofdm ultrawideband receiver and built-in testing techniques for analog and rf integrated circuits

    Get PDF
    This work consists of two main parts: a) Design of a 3-10GHz UltraWideBand (UWB) Receiver and b) Built-In Testing Techniques (BIT) for Analog and RF circuits. The MultiBand OFDM (MB-OFDM) proposal for UWB communications has received significant attention for the implementation of very high data rate (up to 480Mb/s) wireless devices. A wideband LNA with a tunable notch filter, a downconversion quadrature mixer, and the overall radio system-level design are proposed for an 11-band 3.4-10.3GHz direct conversion receiver for MB-OFDM UWB implemented in a 0.25mm BiCMOS process. The packaged IC includes an RF front-end with interference rejection at 5.25GHz, a frequency synthesizer generating 11 carrier tones in quadrature with fast hopping, and a linear phase baseband section with 42dB of gain programmability. The receiver IC mounted on a FR-4 substrate provides a maximum gain of 67-78dB and NF of 5-10dB across all bands while consuming 114mA from a 2.5V supply. Two BIT techniques for analog and RF circuits are developed. The goal is to reduce the test cost by reducing the use of analog instrumentation. An integrated frequency response characterization system with a digital interface is proposed to test the magnitude and phase responses at different nodes of an analog circuit. A complete prototype in CMOS 0.35mm technology employs only 0.3mm2 of area. Its operation is demonstrated by performing frequency response measurements in a range of 1 to 130MHz on 2 analog filters integrated on the same chip. A very compact CMOS RF RMS Detector and a methodology for its use in the built-in measurement of the gain and 1dB compression point of RF circuits are proposed to address the problem of on-chip testing at RF frequencies. The proposed device generates a DC voltage proportional to the RMS voltage amplitude of an RF signal. A design in CMOS 0.35mm technology presents and input capacitance <15fF and occupies and area of 0.03mm2. The application of these two techniques in combination with a loop-back test architecture significantly enhances the testability of a wireless transceiver system
    corecore