749 research outputs found

    Physical Layer Aware Optical Networks

    Get PDF
    This thesis describes novel contributions in the field of physical layer aware optical networks. IP traffic increase and revenue compression in the Telecom industry is putting a lot of pressure on the optical community to develop novel solutions that must both increase total capacity while being cost effective. This requirement is pushing operators towards network disaggregation, where optical network infrastructure is built by mix and match different physical layer technologies from different vendors. In such a novel context, every equipment and transmission technique at the physical layer impacts the overall network behavior. Hence, methods giving quantitative evaluations of individual merit of physical layer equipment at network level are a firm request during network design phases as well as during network lifetime. Therefore, physical layer awareness in network design and operation is fundamental to fairly assess the potentialities, and exploit the capabilities of different technologies. From this perspective, propagation impairments modeling is essential. In this work propagation impairments in transparent optical networks are summarized, with a special focus on nonlinear effects. The Gaussian Noise model is reviewed, then extended for wideband scenarios. To do so, the impact of polarization mode dispersion on nonlinear interference (NLI) generation is assessed for the first time through simulation, showing its negligible impact on NLI generation. Thanks to this result, the Gaussian Noise model is generalized to assess the impact of space and frequency amplitude variations along the fiber, mainly due to stimulated Raman scattering, on NLI generation. The proposed Generalized GN (GGN) model is experimentally validated on a setup with commercial linecards, compared with other modeling options, and an example of application is shown. Then, network-level power optimization strategies are discussed, and the Locally Optimization Global Optimization (LOGO) approach reviewed. After that, a novel framework of analysis for optical networks that leverages detailed propagation impairment modeling called the Statistical Network Assessment Process (SNAP) is presented. SNAP is motivated by the need of having a general framework to assess the impact of different physical layer technologies on network performance, without relying on rigid optimization approaches, that are not well-suited for technology comparison. Several examples of applications of SNAP are given, including comparisons of transceivers, amplifiers and node technologies. SNAP is also used to highlight topological bottlenecks in progressively loaded network scenarios and to derive possible solutions for them. The final work presented in this thesis is related to the implementation of a vendor agnostic quality of transmission estimator for multi-vendor optical networks developed in the context of the Physical Simulation Environment group of the Telecom Infra Project. The implementation of a module based on the GN model is briefly described, then results of a multi-vendor experimental validation performed in collaboration with Microsoft are shown

    Wideband Watt-Level Spatial Power-Combined Power Amplifier in SiGe BiCMOS Technology for Efficient mm-Wave Array Transmitters

    Get PDF
    The continued demand for high-speed wireless communications is driving the development of integrated high-power transmitters at millimeter wave (mm-Wave) frequencies. Si-based technologies allow achieving a high level of integration but usually provide insufficient generated RF power to compensate for the increased propagation and material losses at mm-Wave bands due to the relatively low breakdown voltage of their devices. This problem can be reduced significantly if one could combine the power of multiple active devices on each antenna element. However, conventional on-chip power combining networks have inherently high insertion losses reducing transmitter efficiency and limiting its maximum achievable output power.This work presents a non-conventional design approach for mm-Wave Si-based Watt-level power amplifiers that is based on novel power-combining architecture, where an array of parallel custom PA-cells suited on the same chip is interfaced to a single substrate integrated waveguide (to be a part of an antenna element). This allows one to directly excite TEm0 waveguide modes with high power through spatial power combining functionality, obviating the need for intermediate and potentially lossy on-chip power combiners. The proposed solution offers wide impedance bandwidth (50%) and low insertion losses (0.4 dB), which are virtually independent from the number of interfaced PA-cells. The work evaluates the scalability bounds of the architecture as well as discusses the critical effects of coupled non-identical PA-cells, which are efficiently reduced by employing on-chip isolation load resistors.The proposed architecture has been demonstrated through an example of the combined PA with four differential cascode PA-cells suited on the same chip, which is flip-chip interconnected to the combiner placed on a laminate. This design is implemented in a 0.25 um SiGe BiCMOS technology. The PA-cell has a wideband performance (38.6%) with both high peak efficiency (30%) and high saturated output power (24.9 dBm), which is the highest reported output power level obtained without the use of circuit-level power combining in Si-based technologies at Ka-band. In order to achieve the optimal system-level performance of the combined PA, an EM-circuit-thermal optimization flow has been proposed, which accounts for various multiphysics effects occurring in the joint structure. The final PA achieves the peak PAE of 26.7% in combination with 30.8 dBm maximum saturated output power, which is the highest achievable output power in practical applications, where the 50-Ohms load is placed on a laminate. The high efficiency (>20%) and output power (>29.8 dBm) over a wide frequency range (30%) exceed the state-of-the-art in Si-based PAs

    CMOS Data Converters for Closed-Loop mmWave Transmitters

    Get PDF
    With the increased amount of data consumed in mobile communication systems, new solutions for the infrastructure are needed. Massive multiple input multiple output (MIMO) is seen as a key enabler for providing this increased capacity. With the use of a large number of transmitters, the cost of each transmitter must be low. Closed-loop transmitters, featuring high-speed data converters is a promising option for achieving this reduced unit cost.In this thesis, both digital-to-analog (D/A) and analog-to-digital (A/D) converters suitable for wideband operation in millimeter wave (mmWave) massive MIMO transmitters are demonstrated. A 2 76 bit radio frequency digital-to-analog converter (RF-DAC)-based in-phase quadrature (IQ) modulator is demonstrated as a compact building block, that to a large extent realizes the transmit path in a closed-loop mmWave transmitter. The evaluation of an successive-approximation register (SAR) analog-to-digital converter (ADC) is also presented in this thesis. Methods for connecting simulated and measured performance has been studied in order to achieve a better understanding about the alternating comparator topology.These contributions show great potential for enabling closed-loop mmWave transmitters for massive MIMO transmitter realizations

    Towards low-cost gigabit wireless systems at 60 GHz

    Get PDF
    The world-wide availability of the huge amount of license-free spectral space in the 60 GHz band provides wide room for gigabit-per-second (Gb/s) wireless applications. A commercial (read: low-cost) 60-GHz transceiver will, however, provide limited system performance due to the stringent link budget and the substantial RF imperfections. The work presented in this thesis is intended to support the design of low-cost 60-GHz transceivers for Gb/s transmission over short distances (a few meters). Typical applications are the transfer of high-definition streaming video and high-speed download. The presented work comprises research into the characteristics of typical 60-GHz channels, the evaluation of the transmission quality as well as the development of suitable baseband algorithms. This can be summarized as follows. In the first part, the characteristics of the wave propagation at 60 GHz are charted out by means of channel measurements and ray-tracing simulations for both narrow-beam and omni-directional configurations. Both line-of-sight (LOS) and non-line-of-sight (NLOS) are considered. This study reveals that antennas that produce a narrow beam can be used to boost the received power by tens of dBs when compared with omnidirectional configurations. Meanwhile, the time-domain dispersion of the channel is reduced to the order of nanoseconds, which facilitates Gb/s data transmission over 60-GHz channels considerably. Besides the execution of measurements and simulations, the influence of antenna radiation patterns is analyzed theoretically. It is indicated to what extent the signal-to-noise ratio, Rician-K factor and channel dispersion are improved by application of narrow-beam antennas and to what extent these parameters will be influenced by beam pointing errors. From both experimental and analytical work it can be concluded that the problem of the stringent link-budget can be solved effectively by application of beam-steering techniques. The second part treats wideband transmission methods and relevant baseband algorithms. The considered schemes include orthogonal frequency division multiplexing (OFDM), multi-carrier code division multiple access (MC-CDMA) and single carrier with frequency-domain equalization (SC-FDE), which are promising candidates for Gb/s wireless transmission. In particular, the optimal linear equalization in the frei quency domain and associated implementation issues such as synchronization and channel estimation are examined. Bit error rate (BER) expressions are derived to evaluate the transmission performance. Besides the linear equalization techniques, a low-complexity inter-symbol interference cancellation technique is proposed to achieve much better performance of code-spreading systems such as MC-CDMA and SC-FDE. Both theoretical analysis and simulations demonstrate that the proposed scheme offers great advantages as regards both complexity and performance. This makes it particularly suitable for 60-GHz applications in multipath environments. The third part treats the influence of quantization and RF imperfections on the considered transmission methods in the context of 60-GHz radios. First, expressions for the BER are derived and the influence of nonlinear distortions caused by the digital-to-analog converters, analog-to-digital converters and power amplifiers on the BER performance is examined. Next, the BER performance under the influence of phase noise and IQ imbalance is evaluated for the case that digital compensation techniques are applied in the receiver as well as for the case that such techniques are not applied. Finally, a baseline design of a low-cost Gb/s 60-GHz transceiver is presented. It is shown that, by application of beam-steering in combination with SC-FDE without advanced channel coding, a data rate in the order of 2 Gb/s can be achieved over a distance of 10 meters in a typical NLOS indoor scenario

    Performance limits in optical communications due to fiber nonlinearity

    Get PDF
    In this paper, we review the historical evolution of predictions of the performance of optical communication systems. We will describe how such predictions were made from the outset of research in laser based optical communications and how they have evolved to their present form, accurately predicting the performance of coherently detected communication systems

    Amplifier Architectures for Wireless Communication Systems

    Get PDF
    Ever-increasing demand in modern wireless communication systems leads researchers to focus on design challenges on one of the main components of RF transmitters and receivers, namely amplifiers. On the transmitter side, enhanced efficiency and broader bandwidth over single and multiple bands on power amplifiers will help to have superior performance in communication systems. On the other hand, for the receiver side, having low noise and high gain will be necessary to ensure good quality transmission over such systems. In light of these considerations, a unique approach in design methodologies are studied with low noise amplifiers (LNAs) for RF receivers and the Doherty technique is analyzed for efficiency enhancement for power amplifiers (PA) on the transmitters. This work can be outlined in two parts. In the first part, Low Noise RF amplifier designs with Bipolar Junction Transistor (BJT) are studied to achieve better performing LNAs for receivers. The aim is to obtain a low noise figure while optimizing the bandwidth and achieving a maximum available gain. There are two designs that are operating at different center frequencies and utilizing different transistors. The first design is a wideband low-noise amplifier operating at 2 GHz with a high power BJT. The proposed design uses only distributed elements to realize the input and output matching networks. Additionally, a passive DC bias network is used instead of an active DC bias network to avoid possible complications due to the lumped elements parasitic effects. The matching networks are designed based on the reflection coefficients that are derived based on the transistor’s available regions. The second design is a low voltage standing wave ratio (VSWR) amplifier with a low noise figure operating at 3 GHz. This design is following the same method as in the first design. Both these amplifiers are designed to operate in broadband applications and can be good candidates for base stations. The second part of this work focuses on the transmitter side of communication systems. For this part, Doherty Power Amplifier (DPA) is analyzed as an efficiency enhancement technique for PAs. A modified architecture is proposed to have wider bandwidth and higher efficiency. In the proposed design, the quarter-wave impedance inverter was eliminated. The input and the output of the main and peak amplifiers are matched to the load directly. Additionally, the input and output matching networks are realized only using distributed elements. The selected transistor for this design is a 10 W Gallium Nitride (GaN). The fabricated amplifier operates at the center frequency of 2 GHz and provides 40% fractional bandwidth, 54% of maximum power-added efficiency, and 12.5 dB or better small-signal gain. The design is showing promising results to be a good candidate for better-performing transmitters over the L- and S- band

    Design of an Overmoded Ka-Band Sheet-Beam Coupled-Cavity Traveling-Wave Tube Amplifier

    Get PDF
    This thesis develops a qualified design for a sheet-beam coupled-cavity slow-wave structure for use in a high-power millimeter wave traveling wave tube amplifier. The main advance realized in the design is the roughly ten-fold increase in power gained by utilizing a sheet, rather than cylindrical, beam while at the same time employing mode-suppression techniques to suppress competing modes that are introduced by the sheet geometry. This design addresses considerations relevant to high-power tubes in general, as well as points specific to the design of a sheet-beam structure. The coupled-cavity structure is designed with the following general characteristics: center frequency of 35 GHz with greater than a 10% bandwidth, and capabilities of 5 kW pulsed output power. The device operating parameters are as follows: a moderate gain of 18 dB, and an experimentally demonstrated sheet electron beam with 3.5 A, 19.5 kV, and 0.3 mm x 4.0 mm beam cross-section. The final design goal has been to limit the interaction length as much as possible to reduce magnet weight and complications. A final design structure is proposed, which produces in excess of 5 kW peak power in simulation with safeguards from instabilities. The structure geometry is based on a novel design for a sheet-beam coupled-cavity slow-wave structure that has been characterized through various analyses, simulations, and experiments. This thesis outlines and details the various techniques used to probe the structure and thus form a full characterization of the structure and proposed amplifier device. The concept espoused by much of this work is to adapt the analyses from cylindrical beam devices for the sheet-beam geometry. Then we make comparisons between the new sheet-beam structure and conventional devices. From these comparisons we draw conclusions on the operation of sheet-beam amplifiers and make design choices accordingly. The final design is validated with fully three-dimensional particle simulations and predicts stable amplification across the range of operation

    Biomedical Engineering

    Get PDF
    Biomedical engineering is currently relatively wide scientific area which has been constantly bringing innovations with an objective to support and improve all areas of medicine such as therapy, diagnostics and rehabilitation. It holds a strong position also in natural and biological sciences. In the terms of application, biomedical engineering is present at almost all technical universities where some of them are targeted for the research and development in this area. The presented book brings chosen outputs and results of research and development tasks, often supported by important world or European framework programs or grant agencies. The knowledge and findings from the area of biomaterials, bioelectronics, bioinformatics, biomedical devices and tools or computer support in the processes of diagnostics and therapy are defined in a way that they bring both basic information to a reader and also specific outputs with a possible further use in research and development
    • …
    corecore