12 research outputs found

    Induced effects of moving people in an indoor radio channel at sub-6 GHz 5G bands

    Get PDF

    Frequency hopping in wireless sensor networks

    Get PDF
    Wireless sensor networks (WSNs) are nowadays being used to collectively gather and spread information in different kinds of applications, for military, civilian, environmental as well as commercial purposes. Therefore the proper functioning of WSNs under different kinds of environmental conditions, especially hostile environments, is a must and a lot of research currently ongoing. The problems related to the initialization and deployment of WSNs under harsh and resource limited conditions are investigated in this thesis. Frequency hopping (FH) is a spread spectrum technique in which multiple channels are used, or hoped, for communications across the network. This mitigates the worst effects of interference with frequency agile communication systems rather than by brute force approaches. FH is a promising technique for achieving the coexistence of sensor networks with other currently existing wireless systems, and it is successful within the somewhat limited computational capabilities of the sensor nodes hardware radios. In this thesis, a FH scheme for WSNs is implemented for a pair of nodes on an application layer. The merits and demerits of the scheme are studied for different kinds of WSN environments. The implementation has been done using a Sensinode NanoStack, a communication stack for internet protocol (IP) based wireless sensor networks and a Sensinode Devkit, for an IPv6 over low power wireless personal area network (6LoWPAN). The measurements are taken from the developed test bed and channel simulator for different kinds of scenarios. The detailed analysis of the FH scheme is done to determine its usefulness against interference from other wireless systems, especially wireless local area networks (WLANs), and the robustness of the scheme to combat fading or frequency selective fading

    Enhancing wireless communication system performance through modified indoor environments

    Get PDF
    This thesis reports the methods, the deployment strategies and the resulting system performance improvement of in-building environmental modification. With the increasing use of mobile computing devices such as PDAs, laptops, and the expansion of wireless local area networks (WLANs), there is growing interest in increasing productivity and efficiency through enhancing received signal power. This thesis proposes the deployment of waveguides consisting of frequency selective surfaces (FSSs) in indoor wireless environments and investigates their effect on radio wave propagation. The received power of the obstructed (OBS) path is attenuated significantly as compared with that of the line of sight (LOS) path, thereby requiring an additional link budget margin as well as increased battery power drain. In this thesis, the use of an innovative model is also presented to selectively enhance radio propagation in indoor areas under OBS conditions by reflecting the channel radio signals into areas of interest in order to avoid significant propagation loss. An FSS is a surface which exhibits reflection and/or transmission properties as a function of frequency. An FSS with a pass band frequency response was applied to an ordinary or modified wall as a wallpaper to transform the wall into a frequency selective (FS) wall (FS-WALL) or frequency selective modified wall (FS-MWALL). Measurements have shown that the innovative model prototype can enhance 2.4GHz (IEEE 802.11b/g/n) transmissions in addition to the unmodified wall, whereas other radio services, such as cellular telephony at 1.8GHz, have other routes to penetrate or escape. The FSS performance has been examined intensely by both equivalent circuit modelling, simulation, and practical measurements. Factors that influence FSS performance such as the FSS element dimensions, element conductivities, dielectric substrates adjacent to the FSS, and signal incident angles, were investigated. By keeping the elements small and densely packed, a largely angle-insensitive FSS was developed as a promising prototype for FSS wallpaper. Accordingly, the resultant can be modelled by cascading the effects of the FSS wallpaper and the ordinary wall (FSWALL) or modified wall (FS-MWALL). Good agreement between the modelled, simulated, and the measured results was observed. Finally, a small-scale indoor environment has been constructed and measured in a half-wave chamber and free space measurements in order to practically verify this approach and through the usage of the deterministic ray tracing technique. An initial investigation showing that the use of an innovative model can increase capacity in MIMO systems. This can be explained by the presence of strong multipath components which give rise to a low correlated Rayleigh Channel. This research work has linked the fields of antenna design, communication systems, and building architecture

    Journal of Telecommunications and Information Technology, 2010, nr 1

    Get PDF
    kwartalni

    Optimising BFWA networks

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Optimising BFWA networks

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Routing algorithms for wireless sensor : networks based on the duty cycle of its components

    Get PDF
    [eng] Wireless sensor network is one of the most important topics in the current data transferring. In fact regarding to data gathering and transformation, cost effective is the top topic and optimum point, which every vendors and sector are focusing on it. In the field of petrochemical regarding sensitive processes could not stay out of this scope and start to monitor the gas pipes and processes over the wireless fashion. Therefore some items should have been taking into considerations such as: instant monitoring, nonstop characteristic, long term investing and energy consuming. According to those aforesaid items, we have planned to do an investigation and find the feasibly of how we can to create and distribute a network to have accuracy to measurement , sending data reliability, having long term network life cycle and having minimum energy consuming. Therefore the only technology could help us was IEEE 802.15.4 with mixed of microcontrollers and transceivers, able to manipulate to reach out our objects in maximizing lifetime and minimizing latency in wsn, as an unique routing algorithm in Mobile ad Hoc Network. WSN in fact is a relatively new section of networking technology and nowadays is more popular. The reason of these advantages instead of others is low-power microcontroller and inexpensive sensor usage for any communications and also simple sensor designing. Regarding to network layers, Physical layer for WSN based on IEEE802.15.4 is fundamental of frames and packets transactions. So two main devices which are involving in this project: transceivers such as CC2520 and CC3200 ZigBee/IEEE 802.15.4 RF, managed by microcontrollers. Common controller for those transceivers such as MSP430F1611 16-bit MSP430 family for Texas instrument in the nodes and coordinators ideas were selected. One step more close to the idea, was other layer so called Link layer or in other hand MAC layer. Another advantage of WSN is ability to manipulate MAC layer, because modifications in lower layer always has low Energy consuming than other layers. Therefore according to these circumstances, MAC protocols are able to energy efficiency, also reduce and achieve to zero based of unused time in WSN. So any WSN, energy wasting could be control in MAC sub layer and even though MAC protocols. Other layer in WSN is declared as a Network layer, the logical way which those packets could be find the best way and shortest path in minimum time as possible and reachability to the main point based on node and coordinator. Nodes are programmed in upper layer and have been matched with MAC layer, now it's time to join and stick the frames in a packet and involving to each other. Meanwhile we decided to create a middle layer through MAC and Network layer to play as a bridge, mainly called VRT (Variable Response Time) and FRT (Fixed Response Time) to control the energy consumption in the process of routing in network layer. This algorithm is cooperating with MAC layer in sleep and wake up modes, in fact with VRT, nodes just received their needs and captured the vital packet in wake up mode, sends back the answer, now the task is finished and both sided transaction is done. After that, it's not need to have more listening and capturing packets from the remote nodes as a coordinator therefore, left the transmission process to save more energy for further wireless communication stream in sleep mode. Also FRT is another algorithm in MAC layer, to decrease the energy consumption. This algorithm is switch based energy control, as a same concept in VRT in sleeping and wakeup mode. Finally we have design this algorithm in Simulator and real world. The results correlate quite well results showing as a good agreement between two worlds, also we have obtained better results in battery consumption over network life cycle to other business algorithms.[spa] En este trabajo nos focalizaremos en la minimización del consumo a partir de la minimización del número de transmisiones. Buscamos por tanto aquel algoritmo que nos permita aumentar la probabilidad de aciertos. Esta idea, diseñará el algoritmo de enrutamiento que mejor se ajusta a la red MANET. Una vez simulada la red se diseñará un "testbed" en donde una parte de la red se implementará de forma real, mediante la introducción de sensores inalámbricos y la otra parte se hará de forma simulada, a través de una interfaz que interconecta el mundo real con la simulación de Spyder. Se pretende ver que ambos mundos progresan de forma similar. Con respecto a la capa de OSI en WSN, sería prioritaria la capa física o capa de hardware, por este motivo nuestra proyecto también se centra en el tipo determinado de hardware que debe aplicarse para obtener resultados satisfactorios. Entonces tratamos las características de los dos hardwares, el transceiver y el microcontroller. También se trata en este apartado su concepto lógico de acuerdo con la ficha técnica oficial IEEE802.15.4. La segunda prioridad de la capa OSI se centra en el Medium Access Control (MAC) de la capa. En esta capa nuestro objetivo se logrará mediante la manipulación de las addresses MAC. Los protocolos MAC deben estar orientados a la reducción del consumo de energía y también a la reducción del tiempo no utilizado en WSN, para ello aplicamos algunas políticas para controlar los comportamientos del tráfico en esta capa para cambiar el consumo de energía, la vida útil de la red y evitar el gasto innecesario de recursos, en realidad concentramos a nuestro algoritmo VRT y FRT. Respecto de la idea principal, de controlar los sensores para aumentar la vida útil de la red y disminuir el consumo de energía. En realidad se explica cómo controlar la capa MAC y forzar el hardware para lograr el objetivo principal de este proyecto. De hecho podemos decir que mejoramos el reenvío de paquetes entre los sensores intermedios, buscando el promedio de distancia HOP más corta desde el origen al destino, así como la disminución del consumo de energía en cada sensor

    Optimising BFWA networks

    Get PDF
    Broadband Fixed Wireless Access (BFWA) networks are an attractive alternative to cable-based technologies, in offering low-cost, high-speed data services, telephony and video-on-demand to residential and business users. However, in order to compete successfully with available alternative telecommunications solutions, the planning and design of efficient networks is crucial. This thesis presents two tools that enable the planning and evaluation of BFWA networks. AgentOpt is a network design and optimisation tool. A detailed account of the novel scheme, using the principles of emergent, selforganising systems, which AgentOpt employs for finding profit-optimal networks is given. The use of two distinct types of agent entity allows the multi-objective profit/coverage nature of the network planning problem to be satisfied. AgentOpt networks are compared with designs produced by other methods to establish to what extent this decentralised agent approach can optimise BFWA networks. The Network Validation Tool (NVT) analyses the network designs produced by AgentOpt and other automatic cell planning tools (ACPs). This is achieved through simulating the subscription take-up of the potential users in the network. By repetition of this process, statistical data about the various design configurations of the network is produced. This allows a planning engineer to compare and contrast network solutions that may differ in design but perform similarly in terms of expected profit. In this work the NVT is used to formulate some general guidelines about the best-practice use of ACPs
    corecore