1,531 research outputs found

    Data Collection and Machine Learning Methods for Automated Pedestrian Facility Detection and Mensuration

    Get PDF
    Large-scale collection of pedestrian facility (crosswalks, sidewalks, etc.) presence data is vital to the success of efforts to improve pedestrian facility management, safety analysis, and road network planning. However, this kind of data is typically not available on a large scale due to the high labor and time costs that are the result of relying on manual data collection methods. Therefore, methods for automating this process using techniques such as machine learning are currently being explored by researchers. In our work, we mainly focus on machine learning methods for the detection of crosswalks and sidewalks from both aerial and street-view imagery. We test data from these two viewpoints individually and with an ensemble method that we refer to as our “dual-perspective prediction model”. In order to obtain this data, we developed a data collection pipeline that combines crowdsourced pedestrian facility location data with aerial and street-view imagery from Bing Maps. In addition to the Convolutional Neural Network used to perform pedestrian facility detection using this data, we also trained a segmentation network to measure the length and width of crosswalks from aerial images. In our tests with a dual-perspective image dataset that was heavily occluded in the aerial view but relatively clear in the street view, our dual-perspective prediction model was able to increase prediction accuracy, recall, and precision by 49%, 383%, and 15%, respectively (compared to using a single perspective model based on only aerial view images). In our tests with satellite imagery provided by the Mississippi Department of Transportation, we were able to achieve accuracies as high as 99.23%, 91.26%, and 93.7% for aerial crosswalk detection, aerial sidewalk detection, and aerial crosswalk mensuration, respectively. The final system that we developed packages all of our machine learning models into an easy-to-use system that enables users to process large batches of imagery or examine individual images in a directory using a graphical interface. Our data collection and filtering guidelines can also be used to guide future research in this area by establishing standards for data quality and labelling

    Procedural Modeling and Physically Based Rendering for Synthetic Data Generation in Automotive Applications

    Full text link
    We present an overview and evaluation of a new, systematic approach for generation of highly realistic, annotated synthetic data for training of deep neural networks in computer vision tasks. The main contribution is a procedural world modeling approach enabling high variability coupled with physically accurate image synthesis, and is a departure from the hand-modeled virtual worlds and approximate image synthesis methods used in real-time applications. The benefits of our approach include flexible, physically accurate and scalable image synthesis, implicit wide coverage of classes and features, and complete data introspection for annotations, which all contribute to quality and cost efficiency. To evaluate our approach and the efficacy of the resulting data, we use semantic segmentation for autonomous vehicles and robotic navigation as the main application, and we train multiple deep learning architectures using synthetic data with and without fine tuning on organic (i.e. real-world) data. The evaluation shows that our approach improves the neural network's performance and that even modest implementation efforts produce state-of-the-art results.Comment: The project web page at http://vcl.itn.liu.se/publications/2017/TKWU17/ contains a version of the paper with high-resolution images as well as additional materia

    Pedestrian Infrastructure Audit Report: UP 494-Transportation Planning Workshop

    Get PDF
    This report was compiled by the students of UP 494: Transportation Workshop at UIUC. As part of this course, the students engaged with the policies and design of pedestrian infrastructure around Pace bus stops in suburban communities of the Chicago Metropolitan Area. Students designed a custom-made pedestrian infrastructure audit, tailored to the needs of the research as well as the infrastructure available at Pace stops. For the second portion of the workshop, the class focused on performing in-lab exercises and research that would allow the students to better understand policies surrounding pedestrian planning and construction in suburban communities, as well as to strengthen the students understanding of the assessed built environment.Ope

    Classification of road users detected and tracked with LiDAR at intersections

    Get PDF
    Data collection is a necessary component of transportation engineering. Manual data collection methods have proven to be inefficient and limited in terms of the data required for comprehensive traffic and safety studies. Automatic methods are being introduced to characterize the transportation system more accurately and are providing more information to better understand the dynamics between road users. Video data collection is an inexpensive and widely used automated method, but the accuracy of video-based algorithms is known to be affected by obstacles and shadows and the third dimension is lost with video camera data collection. The impressive progress in sensing technologies has encouraged development of new methods for measuring the movements of road users. The Center for Road Safety at Purdue University proposed application of a LiDAR-based algorithm for tracking vehicles at intersections from a roadside location. LiDAR provides a three-dimensional characterization of the sensed environment for better detection and tracking results. The feasibility of this system was analyzed in this thesis using an evaluation methodology to determine the accuracy of the algorithm when tracking vehicles at intersections. According to the implemented method, the LiDAR-based system provides successful detection and tracking of vehicles, and its accuracy is comparable to the results provided by frame-by-frame extraction of trajectory data using video images by human observers. After supporting the suitability of the system for tracking, the second component of this thesis focused on proposing a classification methodology to discriminate between vehicles, pedestrians, and two-wheelers. Four different methodologies were applied to identify the best method for implementation. The KNN algorithm, which is capable of creating adaptive decision boundaries based on the characteristics of similar observations, provided better performance when evaluating new locations. The multinomial logit model did not allow the inclusion of collinear variables into the model. Overfitting of the training data was indicated in the classification tree and boosting methodologies and produced lower performance when the models were applied to the test data. Despite ANOVA analysis not supporting superior performance by a competitor, the objective of classifying movements at intersections under diverse conditions was achieved with the KNN algorithm and was chosen as the method to implement with the existing algorithm

    北九州市における低炭素都市モビリティデザインのための歩行者のプロフィール・活動・環境に関する研究

    Get PDF
    By understanding the walking experience, the importance of walking in sustainable urban development could be comprehended. A tool for urban planning was proposed so that an urban area could be improved to become a walk-able area.北九州市立大

    Pishgu: Universal Path Prediction Network Architecture for Real-time Cyber-physical Edge Systems

    Full text link
    Path prediction is an essential task for many real-world Cyber-Physical Systems (CPS) applications, from autonomous driving and traffic monitoring/management to pedestrian/worker safety. These real-world CPS applications need a robust, lightweight path prediction that can provide a universal network architecture for multiple subjects (e.g., pedestrians and vehicles) from different perspectives. However, most existing algorithms are tailor-made for a unique subject with a specific camera perspective and scenario. This article presents Pishgu, a universal lightweight network architecture, as a robust and holistic solution for path prediction. Pishgu's architecture can adapt to multiple path prediction domains with different subjects (vehicles, pedestrians), perspectives (bird's-eye, high-angle), and scenes (sidewalk, highway). Our proposed architecture captures the inter-dependencies within the subjects in each frame by taking advantage of Graph Isomorphism Networks and the attention module. We separately train and evaluate the efficacy of our architecture on three different CPS domains across multiple perspectives (vehicle bird's-eye view, pedestrian bird's-eye view, and human high-angle view). Pishgu outperforms state-of-the-art solutions in the vehicle bird's-eye view domain by 42% and 61% and pedestrian high-angle view domain by 23% and 22% in terms of ADE and FDE, respectively. Additionally, we analyze the domain-specific details for various datasets to understand their effect on path prediction and model interpretation. Finally, we report the latency and throughput for all three domains on multiple embedded platforms showcasing the robustness and adaptability of Pishgu for real-world integration into CPS applications
    corecore