2,959 research outputs found

    Wide-coverage deep statistical parsing using automatic dependency structure annotation

    Get PDF
    A number of researchers (Lin 1995; Carroll, Briscoe, and Sanfilippo 1998; Carroll et al. 2002; Clark and Hockenmaier 2002; King et al. 2003; Preiss 2003; Kaplan et al. 2004;Miyao and Tsujii 2004) have convincingly argued for the use of dependency (rather than CFG-tree) representations for parser evaluation. Preiss (2003) and Kaplan et al. (2004) conducted a number of experiments comparing “deep” hand-crafted wide-coverage with “shallow” treebank- and machine-learning based parsers at the level of dependencies, using simple and automatic methods to convert tree output generated by the shallow parsers into dependencies. In this article, we revisit the experiments in Preiss (2003) and Kaplan et al. (2004), this time using the sophisticated automatic LFG f-structure annotation methodologies of Cahill et al. (2002b, 2004) and Burke (2006), with surprising results. We compare various PCFG and history-based parsers (based on Collins, 1999; Charniak, 2000; Bikel, 2002) to find a baseline parsing system that fits best into our automatic dependency structure annotation technique. This combined system of syntactic parser and dependency structure annotation is compared to two hand-crafted, deep constraint-based parsers (Carroll and Briscoe 2002; Riezler et al. 2002). We evaluate using dependency-based gold standards (DCU 105, PARC 700, CBS 500 and dependencies for WSJ Section 22) and use the Approximate Randomization Test (Noreen 1989) to test the statistical significance of the results. Our experiments show that machine-learning-based shallow grammars augmented with sophisticated automatic dependency annotation technology outperform hand-crafted, deep, widecoverage constraint grammars. Currently our best system achieves an f-score of 82.73% against the PARC 700 Dependency Bank (King et al. 2003), a statistically significant improvement of 2.18%over the most recent results of 80.55%for the hand-crafted LFG grammar and XLE parsing system of Riezler et al. (2002), and an f-score of 80.23% against the CBS 500 Dependency Bank (Carroll, Briscoe, and Sanfilippo 1998), a statistically significant 3.66% improvement over the 76.57% achieved by the hand-crafted RASP grammar and parsing system of Carroll and Briscoe (2002)

    Automatic acquisition of LFG resources for German - as good as it gets

    Get PDF
    We present data-driven methods for the acquisition of LFG resources from two German treebanks. We discuss problems specific to semi-free word order languages as well as problems arising fromthe data structures determined by the design of the different treebanks. We compare two ways of encoding semi-free word order, as done in the two German treebanks, and argue that the design of the TiGer treebank is more adequate for the acquisition of LFG resources. Furthermore, we describe an architecture for LFG grammar acquisition for German, based on the two German treebanks, and compare our results with a hand-crafted German LFG grammar

    Treebank-based acquisition of wide-coverage, probabilistic LFG resources: project overview, results and evaluation

    Get PDF
    This paper presents an overview of a project to acquire wide-coverage, probabilistic Lexical-Functional Grammar (LFG) resources from treebanks. Our approach is based on an automatic annotation algorithm that annotates “raw” treebank trees with LFG f-structure information approximating to basic predicate-argument/dependency structure. From the f-structure-annotated treebank we extract probabilistic unification grammar resources. We present the annotation algorithm, the extraction of lexical information and the acquisition of wide-coverage and robust PCFG-based LFG approximations including long-distance dependency resolution. We show how the methodology can be applied to multilingual, treebank-based unification grammar acquisition. Finally we show how simple (quasi-)logical forms can be derived automatically from the f-structures generated for the treebank trees

    Treebank-based acquisition of LFG parsing resources for French

    Get PDF
    Motivated by the expense in time and other resources to produce hand-crafted grammars, there has been increased interest in automatically obtained wide-coverage grammars from treebanks for natural language processing. In particular, recent years have seen the growth in interest in automatically obtained deep resources that can represent information absent from simple CFG-type structured treebanks and which are considered to produce more language-neutral linguistic representations, such as dependency syntactic trees. As is often the case in early pioneering work on natural language processing, English has provided the focus of first efforts towards acquiring deep-grammar resources, followed by successful treatments of, for example, German, Japanese, Chinese and Spanish. However, no comparable large-scale automatically acquired deep-grammar resources have been obtained for French to date. The goal of this paper is to present the application of treebank-based language acquisition to the case of French. We show that with modest changes to the established parsing architectures, encouraging results can be obtained for French, with a best dependency structure f-score of 86.73%

    Treebank-based multilingual unification-grammar development

    Get PDF
    Broad-coverage, deep unification grammar development is time-consuming and costly. This problem can be exacerbated in multilingual grammar development scenarios. Recently (Cahill et al., 2002) presented a treebank-based methodology to semi-automatically create broadcoverage, deep, unification grammar resources for English. In this paper we present a project which adapts this model to a multilingual grammar development scenario to obtain robust, wide-coverage, probabilistic Lexical-Functional Grammars (LFGs) for English and German via automatic f-structure annotation algorithms based on the Penn-II and TIGER treebanks. We outline our method used to extract a probabilistic LFG from the TIGER treebank and report on the quality of the f-structures produced. We achieve an f-score of 66.23 on the evaluation of 100 random sentences against a manually constructed gold standard

    Evaluating automatically acquired f-structures against PropBank

    Get PDF
    An automatic method for annotating the Penn-II Treebank (Marcus et al., 1994) with high-level Lexical Functional Grammar (Kaplan and Bresnan, 1982; Bresnan, 2001; Dalrymple, 2001) f-structure representations is presented by Burke et al. (2004b). The annotation algorithm is the basis for the automatic acquisition of wide-coverage and robust probabilistic approximations of LFG grammars (Cahill et al., 2004) and for the induction of subcategorisation frames (O’Donovan et al., 2004; O’Donovan et al., 2005). Annotation quality is, therefore, extremely important and to date has been measured against the DCU 105 and the PARC 700 Dependency Bank (King et al., 2003). The annotation algorithm achieves f-scores of 96.73% for complete f-structures and 94.28% for preds-only f-structures against the DCU 105 and 87.07% against the PARC 700 using the feature set of Kaplan et al. (2004). Burke et al. (2004a) provides detailed analysis of these results. This paper presents an evaluation of the annotation algorithm against PropBank (Kingsbury and Palmer, 2002). PropBank identifies the semantic arguments of each predicate in the Penn-II treebank and annotates their semantic roles. As PropBank was developed independently of any grammar formalism it provides a platform for making more meaningful comparisons between parsing technologies than was previously possible. PropBank also allows a much larger scale evaluation than the smaller DCU 105 and PARC 700 gold standards. In order to perform the evaluation, first, we automatically converted the PropBank annotations into a dependency format. Second, we developed conversion software to produce PropBank-style semantic annotations in dependency format from the f-structures automatically acquired by the annotation algorithm from Penn-II. The evaluation was performed using the evaluation software of Crouch et al. (2002) and Riezler et al. (2002). Using the Penn-II Wall Street Journal Section 24 as the development set, currently we achieve an f-score of 76.58% against PropBank for the Section 23 test set

    Automatic treebank-based acquisition of Arabic LFG dependency structures

    Get PDF
    A number of papers have reported on methods for the automatic acquisition of large-scale, probabilistic LFG-based grammatical resources from treebanks for English (Cahill and al., 2002), (Cahill and al., 2004), German (Cahill and al., 2003), Chinese (Burke, 2004), (Guo and al., 2007), Spanish (O’Donovan, 2004), (Chrupala and van Genabith, 2006) and French (Schluter and van Genabith, 2008). Here, we extend the LFG grammar acquisition approach to Arabic and the Penn Arabic Treebank (ATB) (Maamouri and Bies, 2004), adapting and extending the methodology of (Cahill and al., 2004) originally developed for English. Arabic is challenging because of its morphological richness and syntactic complexity. Currently 98% of ATB trees (without FRAG and X) produce a covering and connected f-structure. We conduct a qualitative evaluation of our annotation against a gold standard and achieve an f-score of 95%

    Dependency parsing resources for French: Converting acquired lexical functional grammar F-Structure annotations and parsing F-Structures directly

    Get PDF
    Recent years have seen considerable success in the generation of automatically obtained wide-coverage deep grammars for natural language processing, given reliable and large CFG-like treebanks. For research within Lexical Functional Grammar framework, these deep grammars are typically based on an extended PCFG parsing scheme from which dependencies are extracted. However, increasing success in statistical dependency parsing suggests that such deep grammar approaches to statistical parsing could be streamlined. We explore this novel approach to deep grammar parsing within the framework of LFG in this paper, for French, showing that best results (an f-score of 69.46) for the established integrated architecture may be obtained for French

    From surface dependencies towards deeper semantic representations [Semantic representations]

    Get PDF
    In the past, a divide could be seen between ’deep’ parsers on the one hand, which construct a semantic representation out of their input, but usually have significant coverage problems, and more robust parsers on the other hand, which are usually based on a (statistical) model derived from a treebank and have larger coverage, but leave the problem of semantic interpretation to the user. More recently, approaches have emerged that combine the robustness of datadriven (statistical) models with more detailed linguistic interpretation such that the output could be used for deeper semantic analysis. Cahill et al. (2002) use a PCFG-based parsing model in combination with a set of principles and heuristics to derive functional (f-)structures of Lexical-Functional Grammar (LFG). They show that the derived functional structures have a better quality than those generated by a parser based on a state-of-the-art hand-crafted LFG grammar. Advocates of Dependency Grammar usually point out that dependencies already are a semantically meaningful representation (cf. Menzel, 2003). However, parsers based on dependency grammar normally create underspecified representations with respect to certain phenomena such as coordination, apposition and control structures. In these areas they are too "shallow" to be directly used for semantic interpretation. In this paper, we adopt a similar approach to Cahill et al. (2002) using a dependency-based analysis to derive functional structure, and demonstrate the feasibility of this approach using German data. A major focus of our discussion is on the treatment of coordination and other potentially underspecified structures of the dependency data input. F-structure is one of the two core levels of syntactic representation in LFG (Bresnan, 2001). Independently of surface order, it encodes abstract syntactic functions that constitute predicate argument structure and other dependency relations such as subject, predicate, adjunct, but also further semantic information such as the semantic type of an adjunct (e.g. directional). Normally f-structure is captured as a recursive attribute value matrix, which is isomorphic to a directed graph representation. Figure 5 depicts an example target f-structure. As mentioned earlier, these deeper-level dependency relations can be used to construct logical forms as in the approaches of van Genabith and Crouch (1996), who construct underspecified discourse representations (UDRSs), and Spreyer and Frank (2005), who have robust minimal recursion semantics (RMRS) as their target representation. We therefore think that f-structures are a suitable target representation for automatic syntactic analysis in a larger pipeline of mapping text to interpretation. In this paper, we report on the conversion from dependency structures to fstructure. Firstly, we evaluate the f-structure conversion in isolation, starting from hand-corrected dependencies based on the TüBa-D/Z treebank and Versley (2005)´s conversion. Secondly, we start from tokenized text to evaluate the combined process of automatic parsing (using Foth and Menzel (2006)´s parser) and f-structure conversion. As a test set, we randomly selected 100 sentences from TüBa-D/Z which we annotated using a scheme very close to that of the TiGer Dependency Bank (Forst et al., 2004). In the next section, we sketch dependency analysis, the underlying theory of our input representations, and introduce four different representations of coordination. We also describe Weighted Constraint Dependency Grammar (WCDG), the dependency parsing formalism that we use in our experiments. Section 3 characterises the conversion of dependencies to f-structures. Our evaluation is presented in section 4, and finally, section 5 summarises our results and gives an overview of problems remaining to be solved

    Automatic acquisition of Spanish LFG resources from the Cast3LB treebank

    Get PDF
    In this paper, we describe the automatic annotation of the Cast3LB Treebank with LFG f-structures for the subsequent extraction of Spanish probabilistic grammar and lexical resources. We adapt the approach and methodology of Cahill et al. (2004), O’Donovan et al. (2004) and elsewhere for English to Spanish and the Cast3LB treebank encoding. We report on the quality and coverage of the automatic f-structure annotation. Following the pipeline and integrated models of Cahill et al. (2004), we extract wide-coverage probabilistic LFG approximations and parse unseen Spanish text into f-structures. We also extend Bikel’s (2002) Multilingual Parse Engine to include a Spanish language module. Using the retrained Bikel parser in the pipeline model gives the best results against a manually constructed gold standard (73.20% predsonly f-score). We also extract Spanish lexical resources: 4090 semantic form types with 98 frame types. Subcategorised prepositions and particles are included in the frames
    • …
    corecore