18 research outputs found

    Sparse Voltage Measurement-Based Fault Location Using Intelligent Electronic Devices

    Get PDF
    This paper proposes a fault-section location method based on sparse measurements, aimed at asymmetrical faults. A virtual current vector is defined to indicate the faulted section, which is sufficiently sparse except that the fault position corresponding entries are nonzero. To simplify the algorithm, the virtual vector is fixed by amplitudes of voltages and impedances and the feasibility is demonstrated. The Bayesian Compressive Sensing theory is introduced to reduce the number of required intelligent electronic devices (IEDs). In addition, the minimal number of IEDs and their allocation are discussed. The performance of the proposed method is validated in a 69-bus, 12.66 kV distribution system with six distributed generations (DGs) in response to various fault scenarios. The simulation results show that the method is robust for single-phase, double-phase, and double-phase to ground faults with high resistance under noisy condition. Furthermore, the method is applicable for networks with inverter interfaced DGs

    Data Acquisition Applications

    Get PDF
    Data acquisition systems have numerous applications. This book has a total of 13 chapters and is divided into three sections: Industrial applications, Medical applications and Scientific experiments. The chapters are written by experts from around the world, while the targeted audience for this book includes professionals who are designers or researchers in the field of data acquisition systems. Faculty members and graduate students could also benefit from the book

    Protection and fault management in active distribution systems

    Get PDF
    The integration of renewable energy resources (RES), as a type of distributed generation (OG) units, is increasing in distribution, systems. This integration, changes the topology, performance and the operational aspects of conventional distribution systems. Protection is one of the main issues that are affected after the high penetration of OGs. Therefore, new protection methods are necessary to guarantee the safety and the reliability of active distribution systems. On the other hand, most RESs are interfaced with the AC grids through power-electronic devices. These interfaces consist of at least one AC/DC conversion units. Hence, using OC distribution systems can contribute to the loss/cost reduction, as some power conversion stages are eliminated. Enhancement in system stability, reduction of power losses, and power quality 1 improvement are other advantages of OC networks. For these reasons as well as the simple integration of electronic loads that are supplied by OC power, the concept of OC distribution systems has attracted a considerable attention over the last years. In 1 fact, MVOC and LVDC grids can be an important part of the future distribution systems. Furthermore, AC and OC system can contribute to construct hybrid AC/DC distribution systems. According to these significant changes in the distribution systems, it is necessary to modify the algorithm of existing protection methods or to propose new protection schemes for both active AC and OC distribution systems. Moreover, in conventional distribution systems, loads are supplied by upstream grid, i.e. transmission lines; therefore, when a fault impacts the upstream grid and the faulty part disconnected by the protection system, all loads connected to distribution systems are disconnected as well. However, in active distribution systems, DGs can support the on-outage zones if the grid equipped with an appropriate fault management system. Therefore, automatic self-healing methods can increase the network reliability and power supply continuity. To provide the self-healing capability, distribution grids should be equipped with adequate algorithms that are able to guarantee the continuous and optima! operation for the isolated section of the grid. In this thesis, differences between protection issues in OC and AC systems are investigated and analyzed. Then, based on this analyze, effective protection and fault management methods are presented far OC distribution systems and microgrids. In the other part of this thesis, a fault management and self-healing algorithm is proposed far active distribution systems. The proposed methods have been evaluated by the hardware-in-the-loop approach using real-time simulators and suitable controllers.La creciente integraci贸n de recursos energ茅ticos renovables en el sistema el茅ctrico ha propiciado el aumento de sistemas de generaci贸n distribuida (DG) en los sistemas de distribuci贸n. Esta integraci贸n,influye en la topologla, el rendimiento y los aspectos operacionales de los sistemas de distribuci贸n convencionales. Su impacto sobre los sistemas de protecci贸n es uno de los principales problemas que se derivan de la alta penetraci贸n de DG. Por ese motivo es preciso dise帽ar nuevos m茅todos y sistemas de protecci贸n que sean capaces de garantizar la seguridad y la fiabilidad de los sistemas de distribuci贸n activos. Por otro lado, la mayoria de sistemas de generaci贸n basados en renovables est谩n interconectados con la red de AC a trav茅s de convertidores electr贸nicos de potencia.Estas interfaces consisten en unidades de conversi贸n DC/AC. Por lo tanto, el uso de sistemas de distribuci贸n de corriente continua puede contribuir a la reducci贸n de las p茅rdidas/ costes, ya que algunas etapas de conversi贸n de energ铆a pueden ser eliminadas. La mejora en la estabilidad del sistema, la reducci贸n de las p茅rdidas de energ铆a,y la mejora la calidad de energ铆a son otras de las ventajas que las redes de corriente continua pueden ofrecer. Por estos motivos, junto con la f谩cil integraci贸n de cargas electr贸nicas alimentadas en OC, el concepto de sistemas de distribuci贸n en OC ha atraido una considerable atenci贸n en los 煤ltimos anos. De hecho, los sistemas MVDC y las redes LVDC est谩n llamados a ser una parte importante delos sistemas de distribuci贸n y transmisi贸n en el futuro. Adem谩s, los sistemas de conversi贸n OC y AC pueden contribuir a la construcci贸n de sistemas de distribuci贸n de AC I DC h铆bridos. De acuerdo con estos cambios, significativos en los sistemas de distribuci贸n, es necesario modificar el algoritmo y los m茅todos de protecci贸n existentes y proponer nuevos esquemas de protecci贸n tanto para los sistemas de distribuci贸n en AC como para los de OC. Por otra parte, en los sistemas de distribuci贸n convencionales, las cargas son alimentadas por la red aguas arriba, es decir;por las lineas de transmisi贸n; Por lo tanto, cuando una falta se produce en la red aguas arriba la parte defectuosa es desconectada por el sistema de protecci贸n, asimismo todas las cargas conectadas a los sistemas de distribuci贸n se desconectan tambi茅n. Sin embargo, en los sistemas de distribuci贸n activos, los sistemas DG pueden soportar las zonas de no disponibilidad si la red est谩 equipada con un sistema de gesti贸n de fallos. Por lo tanto, los m茅todos autom谩ticos de 'self-healing' pueden contribuir a aumentar la continuidad y la fiabilidad del suministro en ta red. Para proporcionar la capacidad de 'self-healing', las redes de distribuci贸n deben estar equipadas con algoritmos adecuados que sean capaces de garantizar el funcionamiento continuo y 贸ptimo para la secci贸n aislada de la red. En esta tesis, las diferencias entre tas protecciones para sistemas de OC y CA son investigadas y analizadas. Luego, en base a este anal铆sis, se presentar谩n los m茅todos de protecci贸n y gesti贸n de fallos adecuados para los sistemas y microrredes de distribuci贸n OC. En la otra parte de esta tesis, se propone un algoritmo de gesti贸n de fallos y 'self-healing ' para sistemas de distribuci贸n activos. Para validar los m茅todos propuestos se ha trabajado con plataformas hardware-in颅 the-loop avanzado utilizando simuladores en tiempo real y controladores trabajando en base a plataformas de control reales

    Detection and Mitigation of Cyber Attacks on Time Synchronization Protocols for the Smart Grid

    Get PDF
    The current electric grid is considered as one of the greatest engineering achievements of the twentieth century. It has been successful in delivering power to consumers for decades. Nevertheless, the electric grid has recently experienced several blackouts that raised several concerns related to its availability and reliability. The aspiration to provide reliable and efficient energy, and contribute to environment protection through the increasing utilization of renewable energies are driving the need to deploy the grid of the future, the smart grid. It is expected that this grid will be self-healing from power disturbance events, operating resiliently against physical and cyber attack, operating efficiently, and enabling new products and services. All these call for a grid with more Information and Communication Technologies (ICT). As such, power grids are increasingly absorbing ICT technologies to provide efficient, secure and reliable two-way communication to better manage, operate, maintain and control electric grid components. On the other hand, the successful deployment of the smart grid is predicated on the ability to secure its operations. Such a requirement is of paramount importance especially in the presence of recent cyber security incidents. Furthermore, those incidents are subject to an augment with the increasing integration of ICT technologies and the vulnerabilities they introduce to the grid. The exploitation of these vulnerabilities might lead to attacks that can, for instance, mask the system observability and initiate cascading failures resulting in undesirable and severe consequences. In this thesis, we explore the security aspects of a key enabling technology in the smart grid, accurate time synchronization. Time synchronization is an immense requirement across the domains of the grid, from generation to transmission, distribution, and consumer premises. We focus on the substation, a basic block of the smart grid system, along with its recommended time synchronization mechanism - the Precision Time Protocol (PTP) - in order to address threats associated with PTP, and propose practical and efficient detection, prevention, mitigation techniques and methodologies that will harden and enhance the security and usability of PTP in a substation. In this respect, we start this thesis with a security assessment of PTP that identifies PTP security concerns, and then address those concerns in the subsequent chapters. We tackle the following main threats associated with PTP: 1) PTP vulnerability to fake timestamp injection through a compromised component 2) PTP vulnerability to the delay attack and 3) The lack of a mechanism that secures the PTP network. Next, and as a direct consequence of the importance of time synchronization in the smart grid, we consider the wide area system to demonstrate the vulnerability of relative data alignment in Phasor Data Concentrators to time synchronization attacks. These problems will be extensively studied throughout this thesis, followed by discussions that highlight open research directions worth further investigations
    corecore