140 research outputs found

    Compact and Wide Stopband Lowpass Filter Using Open Complementary Split Ring Resonator and Defected Ground Structure

    Get PDF
    A compact (0.16 λg x 0.08 λg) and wide stop¬band lowpass filter design using open complementary split ring resonator (OCSRR) and defected ground structure (DGS) is presented in this paper. Low pass filter is con-structed using two cascaded stages of OCSRR. Since the rejection bandwidth of the OCSRR is narrow, tapered dumbbell shaped DGS section is placed under the OCSRR to enhance the bandwidth. The cutoff frequency (fc) of the proposed lowpass filter is 1.09 GHz. The rejection band¬width of the filter covers the entire ultra wideband spec¬trum. Hence the spurious passband suppression is achieved up to 10 fc. The designed filter has been fabri¬cated and validated by experimental result

    Sharp Response Microstrip LPF using Folded Stepped Impedance Open Stubs

    Get PDF
    A novel microstrip lowpass filter with high selectivity and wide stopband is proposed that comprises two lateral folded open stubs and a central mirrored semi-circle ended suppressing cell. The proposed filter has cut-off frequency of 2.28 GHz and is very compact. The stopband width with attenuation level more than -20 dB is equal to 5.47 fc and the transition band is only 0.14 GHz. This filter is designed, fabricated and measured and the simulated and measured results are in good agreemen

    Combined DMS and DGS Techniques for Compact and Low Cutoff Frequency LPF Design

    Get PDF
    high performance and compact size low pass filters with narrow stopband and sharp cutoff characteristics are highly required in numerous wireless communication systems for noise and interference suppression. In this paper, a compact microstrip LPF with sharp cutoff characteristics is introduced. Defected ground structure (DGS) and defected microstrip structure (DMS) have been used to obtain wide stopband. The proposed filter is composed of two arc-shaped DGS units in the ground plane and a shaped microstrip line where stub and inset feed matching techniques is attached to enhance the pass band characteristics. This structure allows sharp cutoff frequency response and high harmonics suppression. Furthermore, it provides compact filter size without the need for cascading periodic DGS structures. The stop band attenuation is controlled by adjusting the depth of the inset feed and the length of the stub sections. It has a 3 dB cutoff frequency at 1.3725 GHz and it is as small as 20 mm × 19 mm

    A novel compact CPW tunable stop band filter using a new Z-DGS-resonator for microwave applications

    Get PDF
    The paper presents a novel very compact CPW bandstop filter. The designed structure consists of one unit of new Z-DGS resonator, placed on top layer of ground plane between the input and output this structure, which is excited by 50 ohm coplanar line. The designed filter can be used in X-Band applications as the band stop can be shifted to any other desired frequency by tuning the length of the Z-DGS. The proposed filter topology has as benefits good performances in terms of wide stop-band rejection, low insertion loss, high return loss, simple design and more small size (17.908 × 10 mm2) compared to other previous works those reported in literature. The stop-band width is from 3.96GHz to 6.21GHz, exhibits a 22,25 dB rejection bandwidth of 45% with high selectivity characteristic at the center frequency of 5.05 GHz

    Modeling of Modified Split-Ring Type Defected Ground Structure and Its Application as Bandstop Filter

    Get PDF
    The shape of a popular split-ring defected ground structure (DGS) is modified by selecting different width of the sides with respect to microstrip line. The frequency characteristics of proposed DGS unit show an attenuation zero close to the attenuation pole frequency. The unit cell is modeled by 3rd order elliptical lowpass filter and an equivalent circuit is presented accordingly. For proposed DGS, both pole and zero frequencies are obtained at lower values compared to split-ring DGS unit with uniform width. The variation of the width of the sides, parallel to microstrip line influences pole frequency. Two DGS cells with different pole frequencies cascaded under High-Low microstrip line realize a sharp and deep bandstop filter. Three-cascaded cells underneath a highlow impedance microstrip line produce sharper and wider bandstop filter characteristics

    A novel cross-coupled microstrip bandpass filter with hairpin-DGS resonators using coupling matrix technique

    Get PDF
    This paper introduces a new design of a cross-coupled microstrip bandpass filter (MBPF) based on hairpin defected ground structure (DGS) resonators using accurate coupling matrix (CM) technique for microwave communication systems. The paper describes the equivalent circuit of the proposed MBPF based on the DGS equivalent circuit model derived from the equivalent inductance and capacitance which occur due to the perturbation of the current in the ground plane by the presence of the slots. The paper investigates also the different external coupling mechanisms that the feed configuration affects significantly the filter response. In this paper, a four order Chebyshev topology has been adopted for designing the filter to suppress harmonics and achieve a very compact size and a wide stopband with two transmission zeros

    A good conversion loss and a very high LO-to-RF isolation of 24-GHz single balanced mixer for RF front-end receiver

    Get PDF
    This work describes the design, analysis and fabrication of a 24-GHz microwave single balanced down-conversion mixer based on Schottky diode, hybrid ring coupler and a wide and deep stopband low-pass filter (LPF). The LPF is composed of three uniform defected ground structures along with a compensated microstrip line. The selected frequencies are 24.125 GHz for RF signal and 24 GHz for LO signal. When the LO and RF signals are injected as 10 dBm and 0 dBm respectively, a conversion loss of 12.85 dB with an LO-to-RF isolation greater than 38 dB is obtained. The measured results agree well with the simulated results and the reported design

    Design of Generalized Chebyshev Lowpass Filter with Defected Stripline Structure (DSS)

    Get PDF
    This paper presents the design of generalized Chebyshev lowpass filter (LPF) and integrated with Defected Stripline Structure (DSS) using Suspended Stripline Structure (SSS). The study involves circuit analysis to determine generalized Chebyshev responses with a transmission zero at finite frequency in order to produce a reduced number of elements values of prototype circuit. The LPF provides a cut-off frequency at 6 GHz with a return loss better than -19 dB, while the DSS exhibits a notch at frequency of 3.2 GHz with a stopband response better than -40 dB. Thus, the integrated LPF and DSS will produce lowpass and band reject response simultaneously. The design is implemented on a Roger Duroid RO4350 with a thickness of 0.168 mm and dielectric constant, εr of 3.48. The simulation performance results show promising results that could be proved in the experiment works. This new class of integrated LPF and DSS would be useful in any RF/ microwave communication systems particularly in wideband applications where the reduction of overall physical volume, weight and cost is critical to maintaining its good performance

    Lowpass Filter with Hilbert Curve Ring and Sierpinski Carpet DGS

    Get PDF
    Good performance and compact size are the paramaters which are vital when desiging a filter. One of the creteria of good performance is selectivity. This research, conducted by Hilbert Curve Ring and Siepinski Carpet, is used as defected ground structure to overcome filter selectivity. By using three cascadeds Hilbert Curve Ring defected ground structure cells and three steps Sierpinski carpet, a lowpass filter is designed and fabricated. The measurement result for lowpass filterwith Hilbert Curve Ring defected ground structure has sharper selectivity with the cut off frequency at 2.173 GHz and the insertion loss value is 2.135 dB. While the measurement result for three steps Sierpinski carpet has the cut off frequency at 1.728 GHz and the insertion loss value is 0.682 dB

    A Miniaturized wide Stopband Low-pass Filter using T and Modified L Shapes Resonators

    Get PDF
    A new structure of microstrip-based low-pass filter with wide stopband and sharp roll-off is introduced, in this paper. In the proposed topology, resonators with T and modified L Shapes have been used. To improve the suppression factor and relative stopband bandwidth, the second resonator has been added to the first resonator. The designed filter has been fabricated on a 20 mm thickness RO4003 substrate, which has a loss tangent of 0.0021 and a relative dielectric constant equal to 3.38. All parameters including roll of rate, stopband, bandwidth, return loss, insertion loss, and figure of merit have significant coefficients. Simulation has been ran using advanced design system software. The 3dB cutoff frequency is appropriate. The value of the insertion loss parameter is <0.1 dB and the S11 parameter is −22 dB at this point. The stopband is extended from 2.42 up to 24 GHz, which shows an ultra-stopband. The results of the simulation and experiment are almost similar, which indicates a proper performance of the designed structure
    corecore