45 research outputs found

    Interference Suppression Techniques for RF Receivers

    Get PDF

    Buck-Plus-Unfolder as the Superior Active Power Decoupling Solution for 400 Vdc/kW-Level Applications

    Get PDF
    In single-phase ac/dc applications where reliability and/or power-density are critical, active power decoupling (APD) circuits can be employed to reduce the required capacitance on the dc-link. Various APD circuits have been proposed so far, all with their advantages and disadvantages. However, many confusions still exist in the literature on this topic which is mainly attributed to a lack of unified and comprehensive assessment criteria. In this paper, first the decisive criteria for a modern APD circuit are established, and the buck APD is identified as the current state-of-the-art, based on them. Then the buck-plus-unfolder topology with triangular current mode (TCM) modulation is proposed as an improvement, and a simple, yet solid foundation is introduced to choose the superior decoupling solution at different specifications. The operation equations for the APD with TCM modulation are derived next, and the operation of the proposed solution is demonstrated using a hardware prototype

    Англійська мова для студентів електромеханічних спеціальностей

    Get PDF
    Навчальний посібник розрахований на студентів напряму підготовки 6.050702 Електромеханіка. Містить уроки, що структуровані за тематичними розділами, граматичний коментар, короткі англо-український і українсько- англійський словники та додатки, які спрямовані на закріплення загальних навичок володіння англійською мовою. Акцентований на ɨсобливості термінології, що застосовується у науково-технічній галузі, зокрема, в електромеханіці та виконання запропонованих завдань, що буде сприяти формуванню навичок перекладу з англійської та української мов, сприйняттю письмової та усної англійської мови, вмінню письмового викладення англійською мовою науково-технічних та інших текстів під час професійної діяльності, спілкуванню з професійних та загальних питань тощо

    The Role of the Bandwidth-Duration Product WT in the Detectability of Diotic Signals

    No full text
    The bandwidth-duration product, WT , is a fundamental parameter in most theories of aural amplitude discrimination of Gaussian noise. These theories predict that detectability is dependent on WT , but not on the individual values of bandwidth and duration. Due to the acoustical uncertainty principle, it is impossible to completely specify an acoustic waveform with both finite duration and finite bandwidth. An observer must decide how best to trade-off information in the time domain with information in the frequency domain. As Licklider (1963) states, "The nature of [the ear's] solution to the time-frequency problem is, in fact, one of the central problems in the psychology of hearing."This problem is still unresolved, primarily due to observer inconsistency in experiments, which degrades performance making it difficult to compare models. The aim was to compare human observers' ability to trade bandwidth and duration, with simulated and theoretical observers. Human observers participated in a parametric study where the bandwidth and duration of 500 Hz noise waveforms was systematically varied for the same bandwidth-duration products (WT = 1, 2, and 4, where W varied over 2.5-160 Hz, and T varied over 400-6.25 ms, in octave steps). If observers can trade bandwidth and duration, detectability should be constant for the same WT . The observers replicated the experiments six times so that group operating characteristic (GOC) analysis could be used to reduce the effects of their inconsistent decision making. Asymptotic errorless performance was estimated by extrapolating results from the GOC analysis, as a function of replications added. Three simulated ideal observers: the energy, envelope, and full-linear (band-pass filter, full-wave rectifier, and true integrator) detectors were compared with each other, with mathematical theory and with human observers. Asymptotic detectability relative to the full-linear detector indicates that human observers best detect signals with a bandwidth of 40-80 Hz and a duration of 50-100 ms, and that other values are traded off in approximately concentric ellipses of equal detectability. Human detectability of Gaussian noise was best modelled by the full-linear detector using a non-optimal filter. Comparing psychometric functions for this detector with human data shows many striking similarities, indicating that human observers can sometimes perform as well as an ideal observer, once their inconsistency is minimised. These results indicate that the human hearing system can trade bandwidth and duration of signals, but not optimally. This accounts for many of the disparate estimates of the critical band, rectifier, and temporal integrator, found in the literature, because (a) the critical band is adjustable, but has a minimum of 40-50 Hz, (b) the rectifier is linear, rather than square-law, and (c) the temporal integrator is either true or leaky with a very long time constant

    Robotic Bass Player

    Get PDF
    The Thumper Robotic Bass MQP is an attempt at creating a self-playing bass guitar that responds to MIDI input as well as input from an electric guitar to provide accompaniment. By bringing together a team of electrical and mechanical engineers, the project was structured to emulate an engineering design as encountered in industry

    Robotic Bass Player

    Get PDF
    The Thumper Robotic Bass MQP is an attempt at creating a self-playing bass guitar that responds to MIDI input as well as input from an electric guitar to provide accompaniment. By bringing together a team of electrical and mechanical engineers, the project was structured to emulate an engineering design as encountered in industry

    A hybrid power converter with enhanced switching ripple cancellation

    Get PDF
    As worldwide electricity demand increases, so does the requirement for effective power conversion combining increased efficiency with minimal harmonic pollution at the lowest financial cost. For medium to high voltage grid-connected applications, multilevel converter topologies enabled the use of lower rated and more efficient self-commutated switches. Due to practical limitations, efficient operation of converters with a low number of levels is restricted to low switching frequencies which in turn becomes a limiting factor for the design of smaller passive filters that are required to limit the associated switching harmonics injected in the AC grid. This thesis investigates the use of a novel hybrid converter concept aimed at medium-voltage (MV) grid-connected applications. Hybrid converters consist of a main inverter processing the bulk of the power with poor waveform performance and a fast and versatile auxiliary inverter to correct the distortion. In this case, the main converter is a medium-voltage three-level Neutral Point Clamped (NPC) inverter and the auxiliary inverter is a low-voltage and low-current rated Current Source Inverter (CSI), fitted with a series capacitor that is used to minimise the CSI voltage stress. As a result the added installed power by the auxiliary CSI switches can remain at very low levels (theoretically <4%), resulting in a minimal added cost, whilst offering a substantial harmonic improvement to the main VSI. Furthermore the auxiliary converter can be retro-fitted to an existing MV inverter installation to improve the current harmonic quality as required by new grid standards, at a minimal cost. The performance of the proposed hybrid solution is evaluated through simulation at 3.3 kV MV level under various grid interconnection scenarios. The feasibility of the concept is validated experimentally, scaled to 415V grid voltage level (a more realistic level for a laboratory demonstrator) while operating under more challenging conditions such as switching ripple levels of 50% peak relative to the fundamental peak, showing that the added installed power can be as low as 7% with very high output grid current quality under all grid scenarios considered

    Electronics, music and computers

    Get PDF
    technical reportElectronic and computer technology has had and will continue to have a marked effect in the field of music. Through the years scientists, engineers, and musicians have applied available technology to new musical instruments, innovative musical sound production, sound analysis, and musicology. At the University of Utah we have designed and are implementing a communication network involving and electronic organ and a small computer to provide a tool to be used in music performance, the learning of music theory, the investigation of music notation, the composition of music, the perception of music, and the printing of music

    Design study of general aviation collision avoidance system

    Get PDF
    The selection and design of a time/frequency collision avoidance system for use in general aviation aircraft is discussed. The modifications to airline transport collision avoidance equipment which were made to produce the simpler general aviation system are described. The threat determination capabilities and operating principles of the general aviation system are illustrated
    corecore