215 research outputs found

    Virtual multichannel SAR for ground moving target imaging

    Get PDF
    Slow moving ground targets are invisible within synthetic aperture radar (SAR) images since they appear defocused and their backscattered signal completely overlap the focused ground return. In order for this targets to be detected and refocused the availability of some spatial degrees of freedom is required. This allows for space/slow time processing to be applied to mitigate the ground clutter. However, multichannel SAR (M-SAR) systems are very expensive and the requirements in terms of baseline length can be very restrictive. In this study a processing scheme that exploits high PRF single channel SAR system to emulate a multichannel SAR is presented. The signal model for both target and clutter components are presented and the difference with respect to an actual M-SAR are highlighted. The effectiveness of the proposed processing is then demonstrated on simulated a measured dataset

    Maritime Moving Target Detection, Tracking and Geocoding Using Range-Compressed Airborne Radar Data

    Get PDF
    Eine regelmäßige und großflächige überwachung des Schiffsverkehrs gewinnt zunehmend an Bedeutung, vor allem auch um maritime Gefahrenlagen und illegale Aktivitäten rechtzeitig zu erkennen. Heutzutage werden dafür überwiegend das automatische Identifikationssystem (AIS) und stationäre Radarstationen an den Küsten eingesetzt. Luft- und weltraumgestützte Radarsensoren, die unabhängig vom Wetter und Tageslicht Daten liefern, können die vorgenannten Systeme sehr gut ergänzen. So können sie beispielsweise Schiffe detektieren, die nicht mit AIS-Transpondern ausgestattet sind oder die sich außerhalb der Reichweite der stationären AIS- und Radarstationen befinden. Luftgestützte Radarsensoren ermöglichen eine quasi-kontinuierliche Beobachtung von räumlich begrenzten Gebieten. Im Gegensatz dazu bieten weltraumgestützte Radare eine große räumliche Abdeckung, haben aber den Nachteil einer geringeren temporalen Abdeckung. In dieser Dissertation wird ein umfassendes Konzept für die Verarbeitung von Radardaten für die Schiffsverkehr-überwachung mit luftgestützten Radarsensoren vorgestellt. Die Hauptkomponenten dieses Konzepts sind die Detektion, das Tracking, die Geokodierung, die Bildgebung und die Fusion mit AIS-Daten. Im Rahmen der Dissertation wurden neuartige Algorithmen für die ersten drei Komponenten entwickelt. Die Algorithmen sind so aufgebaut, dass sie sich prinzipiell für zukünftige Echtzeitanwendungen eignen, die eine Verarbeitung an Bord der Radarplattform erfordern. Darüber hinaus eignen sich die Algorithmen auch für beliebige, nicht-lineare Flugpfade der Radarplattform. Sie sind auch robust gegenüber Lagewinkeländerungen, die während der Datenerfassung aufgrund von Luftturbulenzen jederzeit auftreten können. Die für die Untersuchungen verwendeten Daten sind ausschließlich entfernungskomprimierte Radardaten. Da das Signal-Rausch-Verhältnis von Flugzeugradar-Daten im Allgemeinen sehr hoch ist, benötigen die neuentwickelten Algorithmen keine vollständig fokussierten Radarbilder. Dies reduziert die Gesamtverarbeitungszeit erheblich und ebnet den Weg für zukünftige Echtzeitanwendungen. Der entwickelte neuartige Schiffsdetektor arbeitet direkt im Entfernungs-Doppler-Bereich mit sehr kurzen kohärenten Verarbeitungsintervallen (CPIs) der entfernungskomprimierten Radardaten. Aufgrund der sehr kurzen CPIs werden die detektierten Ziele im Dopplerbereich fokussiert abgebildet. Wenn sich die Schiffe zusätzlich mit einer bestimmten Radialgeschwindigkeit bewegen, werden ihre Signale aus dem Clutter-Bereich hinausgeschoben. Dies erhöht das Verhältnis von Signal- zu Clutter-Energie und verbessert somit die Detektierbarkeit. Die Genauigkeit der Detektion hängt stark von der Qualität der von der Meeresoberfläche rückgestreuten Radardaten ab, die für die Schätzung der Clutter-Statistik verwendet werden. Diese wird benötigt, um einen Detektions-Schwellenwert für eine konstante Fehlalarmrate (CFAR) abzuleiten und die Anzahl der Fehlalarme niedrig zu halten. Daher umfasst der vorgeschlagene Detektor auch eine neuartige Methode zur automatischen Extraktion von Trainingsdaten für die Statistikschätzung sowie geeignete Ozean-Clutter-Modelle. Da es sich bei Schiffen um ausgedehnte Ziele handelt, die in hochauflösenden Radardaten mehr als eine Auflösungszelle belegen, werden nach der Detektion mehrere von einem Ziel stammende Pixel zu einem physischen Objekten zusammengefasst, das dann in aufeinanderfolgenden CPIs mit Hilfe eines Bewegungsmodells und eines neuen Mehrzielverfolgungs-Algorithmus (Multi-Target Tracking) getrackt wird. Während des Trackings werden falsche Zielspuren und Geisterzielspuren automatisch erkannt und durch ein leistungsfähiges datenbankbasiertes Track-Management-System terminiert. Die Zielspuren im Entfernungs-Doppler-Bereich werden geokodiert bzw. auf den Boden projiziert, nachdem die Einfallswinkel (DOA) aller Track-Punkte geschätzt wurden. Es werden verschiedene Methoden zur Schätzung der DOA-Winkel für ausgedehnte Ziele vorgeschlagen und anhand von echten Radardaten, die Signale von echten Schiffen beinhalten, bewertet

    Moving Target Analysis in ISAR Image Sequences with a Multiframe Marked Point Process Model

    Get PDF
    In this paper we propose a Multiframe Marked Point Process model of line segments and point groups for automatic target structure extraction and tracking in Inverse Synthetic Aperture Radar (ISAR) image sequences. For the purpose of dealing with scatterer scintillations and high speckle noise in the ISAR frames, we obtain the resulting target sequence by an iterative optimization process, which simultaneously considers the observed image data and various prior geometric interaction constraints between the target appearances in the consecutive frames. A detailed quantitative evaluation is performed on 8 real ISAR image sequences of different carrier ship and airplane targets, using a test database containing 545 manually annotated frames

    Computational Algorithms for Improved Synthetic Aperture Radar Image Focusing

    Get PDF
    High-resolution radar imaging is an area undergoing rapid technological and scientific development. Synthetic Aperture Radar (SAR) and Inverse Synthetic Aperture Radar (ISAR) are imaging radars with an ever-increasing number of applications for both civilian and military users. The advancements in phased array radar and digital computing technologies move the trend of this technology towards higher spatial resolution and more advanced imaging modalities. Signal processing algorithm development plays a key role in making full use of these technological developments.In SAR and ISAR imaging, the image reconstruction process is based on using the relative motion between the radar and the scene. An important part of the signal processing chain is the estimation and compensation of this relative motion. The increased spatial resolution and number of receive channels cause the approximations used to derive conventional algorithms for image reconstruction and motion compensation to break down. This leads to limited applicability and performance limitations in non-ideal operating conditions.This thesis presents novel research in the areas of data-driven motion compensation and image reconstruction in non-cooperative ISAR and Multichannel Synthetic Aperture Radar (MSAR) imaging. To overcome the limitations of conventional algorithms, this thesis proposes novel algorithms leading to increased estimation performance and image quality. Because a real-time imaging capability is important in many applications, special emphasis is placed on the computational aspects of the algorithms.For non-cooperative ISAR imaging, the thesis proposes improvements to the range alignment, time window selection, autofocus, time-frequency-based image reconstruction and cross-range scaling procedures. These algorithms are combined into a computationally efficient non-cooperative ISAR imaging algorithm based on mathematical optimization. The improvements are experimentally validated to reduce the computational burden and significantly increase the image quality under complex target motion dynamics.Time domain algorithms offer a non-approximated and general way for image reconstruction in both ISAR and MSAR. Previously, their use has been limited by the available computing power. In this thesis, a contrast optimization approach for time domain ISAR imaging is proposed. The algorithm is demonstrated to produce improved imaging performance under the most challenging motion compensation scenarios. The thesis also presents fast time domain algorithms for MSAR. Numerical simulations confirm that the proposed algorithms offer a reasonable compromise between computational speed and image quality metrics

    Multichannel techniques for 3D ISAR

    Get PDF
    This thesis deals with the challenge of forming 3D target reconstruction by using spatial multi-channel ISAR configurations. The standard output of an ISAR imaging system is a 2D projection of the true three-dimensional target reflectivity onto an image plane. The orientation of the image plane cannot be predicted a priori as it strongly depends on the radar-target geometry and on the target motion, which is typically unknown. This leads to a difficult interpretation of the ISAR images. In this scenario, this thesis aim to give possible solutions to such problems by proposing three 3D processing based on interferometry, beamforming techniques and MIMO InISAR systems. The CLEAN method for scattering centres extraction is extended to multichannel ISAR systems and a multistatic 3D target reconstruction that is based on a incoherent technique is suggested

    Multichannel techniques for 3D ISAR

    Get PDF
    This thesis deals with the challenge of forming 3D target reconstruction by using spatial multi-channel ISAR configurations. The standard output of an ISAR imaging system is a 2D projection of the true three-dimensional target reflectivity onto an image plane. The orientation of the image plane cannot be predicted a priori as it strongly depends on the radar-target geometry and on the target motion, which is typically unknown. This leads to a difficult interpretation of the ISAR images. In this scenario, this thesis aim to give possible solutions to such problems by proposing three 3D processing based on interferometry, beamforming techniques and MIMO InISAR systems. The CLEAN method for scattering centres extraction is extended to multichannel ISAR systems and a multistatic 3D target reconstruction that is based on a incoherent technique is suggested

    Innovative SAR & ISAR Signal Processing

    Get PDF
    This thesis reports on research into the eld of Synthetic Aperture Radar (SAR) and Inverse Synthetic Aperture Radar (ISAR) signal processing. The contributions of this thesis may be divided into two following parts: A new bistatic 3D near eld circular SAR imaging algorithm was devel- oped. High resolution radar imaging is typically obtained by combining wide bandwidth signals and synthetic aperture processing. High range resolution is obtained by using modulated signals whereas high cross range resolution is achieved by coherently processing the target echoes at dierent aspect angles of the target. Anyway, theoretical results have shown that when the aspect angle whereby the target is observed is suf- ciently wide, high resolution target images can be obtained by using continuous wave (CW) radars [2], therefore allowing to reduce hardware costs. In a similar way, three dimensional radar imaging can be per- formed by coherently processing the backscattered eld as a function of two rotation angles about two orthogonal axes [3].Three dimensional tar- get radar imaging can be eciently obtained by means of a 3D Fourier Transform, when the far-eld (planar wave) approximation holds. Oth- erwise, the wavefront curvature has to be accounted for. For this reason, a new algorithm based on a near eld spherical wave illumination that takes into account the wavefront curvature by adopting a planar piece- wise approximation was designed. This means that the wavefront is as- sumed to be locally planar around a given point on the target. The oper- ator that the algorithm uses for the focusing procedure is a space variant focusing function which aims at compensating the propagation losses and the wavefront curvature. The algorithm has been developed under the Microwave Electronic Imaging Security and Safety Access (MELISSA) project. The system MELISSA is a body scanner whose purpose is the detection of concealed objects. The added value of the system is the capability to provide an electromagnetic image of the concealed objects. The author would like to thank all people that worked at the project, all LabRass colleagues, all people who designed and acquired real data, all people that permitted the drafting of the rst part of this thesis. The developed algorithm was presented in the chapter 1. The goal of this work was the system design concerning the imaging point of view, by simulating and therefore predicting the system performance by means of the developed algorithm. In the chapter 2 was shown how the design was achieved. Finally, in the chapter 3, the results on real data measured in anechoic chamber with a system with characteristics very close to the nal system prototype MELISSA, was presented. A new way of ISAR processing has been dened, by applying the tradi- tional ISAR processing to data acquired from passive radars. Purpose of the ISAR processing is to extract an electromagnetic bi-dimensional im- age of the target in order to determine the main geometric features of the target, allowing (when possible) recognition and classication. Passive radars are able to detect and track targets by exploiting illuminators of opportunity (IOs). In this work of thesis, it will be proven that the same concept can be extended to allow for Passive Inverse Synthetic Aperture Radar (P-ISAR) imaging. A suitable signal processing is detailed that is able to form P-ISAR images starting from range-Doppler maps, which represent the output of a passive radar signal processing. Multiple chan- nels Digital Video Broadcasting - Terrestrial (DVB-T) signals are used to demonstrate the concept as they provide enough range resolution to form meaningful ISAR images. The problem of grating lobes, generated by DVB-T signal, is also addressed and solved by proposing an innovative P-ISAR technique. The second part of this thesis has been developed un- der the Array Passive ISAR adaptive processing (APIS) project. APIS is dened as a multichannel, bi-static single receiver for array passive radar, capable of detecting targets and generating ISAR images of the detected targets for classication purposes. The author would like to thank all people that worked at the project, all LabRass colleagues, all people who designed, built the prototype and acquired real data, all people that per- mitted the drafting of the second part of this thesis. In the chapter 4, the basics on Passive Bistatic Radar (PBR) was brie y recalled, the P-ISAR processor was detailed and the new algorithm per the Grating Lobes Cancellation was presented. In the chapter 5, some numerical results on simulated data was shown, in order to demonstrate the potentiality of the P-ISAR, for the imaging and classication purpose. In fact, by using more than three adjacent channels and by observing the signal for a long time, ner range and cross-range resolutions, respectively, could be achieved. Finally, the obtained results on real data was discussed in the chapter 6

    실시간 근거리 영상화를 위한 MIMO 역합성 개구 레이더 시스템

    Get PDF
    학위논문(박사) -- 서울대학교대학원 : 공과대학 전기·정보공학부, 2022. 8. 남상욱.Microwave and millimeter wave (micro/mmW) imaging systems have advantages over other imaging systems in that they have penetration properties over non-metallic structures and non-ionization. However, these systems are commercially applicable in limited areas. Depending on the quality and size of the images, a system can be expensive and images cannot be provided in real-time. To overcome the challenges of the current micro/mmW imaging system, it is critical to suggest a new system concept and prove its potential benefits and hazards by demonstrating the testbed. This dissertation presents Ku1DMIC, a wide-band micro/mmW imaging system using Ku-band and 1D-MIMO array, which can overcome the challenges above. For cost-effective 3D imaging capabilities, Ku1DMIC uses 1D-MIMO array configuration and inverse synthetic aperture radar (ISAR) technique. At the same time, Ku1DMIC supports real-time data acquisition through a system-level design of a seamless interface with frequency modulated continuous wave (FMCW) radar. To show the feasibility of 3D imaging with Ku1DMIC and its real-time capabilities, an accelerated imaging algorithm, 1D-MIMO-ISAR RSA, is proposed and demonstrated. The detailed contributions of the dissertation are as follows. First, this dissertation presents Ku1DMIC – a Ku-band MIMO frequency-modulated continuous-wave (FMCW) radar experimental platform with real-time 2D near-field imaging capabilities. The proposed system uses Ku-band to cover the wider illumination area given the limited number of antennas and uses a fast ramp and wide-band FMCW waveform for rapid radar data acquisition while providing high-resolution images. The key design aspect behind the platform is stability, reconfigurability, and real-time capabilities, which allows investigating the exploration of the system’s strengths and weaknesses. To satisfy the design aspect, a digitally assisted platform is proposed and realized based on an AMD-Xilinx UltraScale+ Radio Frequency System on Chip (RFSoC). The experimental investigation for real-time 2D imaging has proved the ability of video-rate imaging at around 60 frames per second. Second, a waveform digital pre-distortion (DPD) method and calibration method are proposed to enhance the image quality. Even if a clean FMCW waveform is generated with the aid of the optimized waveform generator, the signal will inevitably suffer from distortion, especially in the RF subsystem of the platform. In near-field imaging applications, the waveform DPD is not effective at suppressing distortion in wide-band FMCW radar systems. To solve this issue, the LO-DPD architecture and binary search based DPD algorithm are proposed to make the waveform DPD effective in Ku1DMIC. Furthermore, an image-domain optimization correction method is proposed to compensate for the remaining errors that cannot be eliminated by the waveform DPD. For robustness to various unwanted signals such as noise and clutter signals, two regularized least squares problems are applied and compared: the generalized Tikhonov regularization and the total variation (TV) regularization. Through various 2D imaging experiments, it is confirmed that both methods can enhance the image quality by reducing the sidelobe level. Lastly, the research is conducted to realize real-time 3D imaging by applying the ISAR technique to Ku1DMIC. The realization of real-time 3D imaging using 1D-MIMO array configuration is impactful in that this configuration can significantly reduce the costs of the 3D imaging system and enable imaging of moving objects. To this end, the signal model for the 1D-MIMO-ISAR configuration is presented, and then the 1D-MIMO-ISAR range stacking algorithm (RSA) is proposed to accelerate the imaging reconstruction process. The proposed 1D-MIMO-ISAR RSA can reconstruct images within hundreds of milliseconds while maintaining almost the same image quality as the back-projection algorithm, bringing potential use for real-time 3D imaging. It also describes strategies for setting ROI, considering the real-world situations in which objects enter and exit the field of view, and allocating GPU memory. Extensive simulations and experiments have demonstrated the feasibility and potential benefits of 1D-MIMO-IASR configuration and 1D-MIMO-ISAR RSA.마이크로파 및 밀리미터파(micro/mmW) 영상화 시스템은 비금속 구조 및 비이온화에 비해 침투 특성이 있다는 점에서 다른 이미징 시스템에 비해 장점이 있다. 그러나 이러한 시스템은 제한된 영역에서만 상업적으로 적용되고 있다. 이미지의 품질과 크기에 따라 시스템이 매우 고가일 수 있으며 이미지를 실시간으로 제공할 수 없는 현황이다. 현재의 micro/mmW 이미징 시스템의 문제를 극복하려면 새로운 시스템 개념을 제안하고 테스트베드를 시연하여 잠재적인 이점과 위험을 입증하는 것이 중요하다. 본 논문에서는 Ku-band와 1D-MIMO 어레이를 이용한 광대역 micro/mmW 이미징 시스템인 Ku1DMIC를 제안하여 위와 같은 문제점을 극복할 수 있다. 비용 효율적인 3차원 영상화 기능을 위해 Ku1DMIC는 1D-MIMO 배열 기술과 ISAR(Inverse Synthetic Aperture Radar) 기술을 사용한다. 동시에 Ku1DMIC는 주파수 변조 연속파 (FMCW) 레이더와의 원활한 인터페이스의 시스템 수준 설계를 통해 실시간 데이터 수집을 지원한다. Ku1DMIC를 사용한 3차원 영상화의 구현 및 실시간 기능의 가능성을 보여주기 위해, 2차원 영상화를 위한 1D-MIMO RSA과 3차원 영상화를 위한 1D-MIMO-ISAR RSA가 제안되고 Ku1DMIC에서 구현된다. 따라서, 본 학위 논문의 주요 기여는 Ku-band 1D-MIMO 배열 기반 영상화 시스템 프로토타입을 개발 및 테스트하고, ISAR 기반 3차원 영상화 기능을 검사하고, 실시간 3차원 영상화 가능성을 조사하는 것이다. 이에 대한 세부적인 기여 항목은 다음과 같다. 첫째, 실시간 2D 근거리장 이미징 기능을 갖춘 Ku 대역 MIMO 주파수 변조 연속파(FMCW) 레이더 실험 플랫폼인 Ku1DMIC를 제시한다. 제안하는 시스템은 제한된 수의 안테나에서 더 넓은 조명 영역을 커버하기 위해 Ku 대역을 사용하고 고해상도 이미지를 제공하면서 빠른 레이더 데이터 수집을 위해 고속 램프 및 광대역 FMCW 파형을 사용한다. 플랫폼의 핵심 설계 원칙은 안정성, 재구성 가능성 및 실시간 기능으로 시스템의 강점과 약점을 광범위하게 탐색한다. 설계 원칙을 만족시키기 위해 AMD-Xilinx UltraScale+ RFSoC(Radio Frequency System on Chip)를 기반으로 디지털 지원 플랫폼을 제안하고 구현한다. 실시간 2D 이미징에 대한 실험적 조사는 초당 약 60프레임에서 비디오 속도 이미징의 능력을 입증했다. 둘째, 영상 품질 향상을 위한 파형 디지털 전치왜곡(DPD) 방법과 보정 방법을 제안한다. 최적화된 파형 발생기의 도움으로 깨끗한 FMCW 파형이 생성되더라도 특히 플랫폼의 RF 하위 시스템에서 신호는 필연적으로 왜곡을 겪게된다. 근거리 영상화 응용 분야에서는 파형 DPD는 광대역 FMCW 레이더 시스템의 왜곡을 억제하는 데 효과적이지 않다. 이 문제를 해결하기 위해 Ku1DMIC에서 파형 DPD가 유효하도록 LO-DPD 아키텍처와 이진 탐색 기반 DPD 알고리즘을 제안한다. 또한, 파형 DPD로 제거할 수 없는 나머지 오류를 보상하기 위해 이미지 영역 최적화 보정 방법을 제안한다. 노이즈 및 클러터 신호와 같은 다양한 원치 않는 신호에 대한 견고성을 위해 일반화된 Tikhonov 정규화 및 전체 변동(TV) 정규화라는 두 가지 정규화된 최소 자승 문제를 적용 후 비교한다. 다양한 2차원 영상화 실험을 통해 두 방법 모두 부엽 레벨을 줄여 화질을 향상시킬 수 있음을 확인한다. 마지막으로, ISAR 기법을 2차원 영상 플랫폼에 적용하여 실시간 3차원 영상을 구현하기 위한 연구를 진행한다. 1D-MIMO-ISAR 구성에서 실시간 3D 이미징의 구현은 이러한 구성이 3D 이미징 시스템의 비용을 크게 줄일 수 있다는 점에서 영향력이 있다. 따라서 이 논문에서는 1D-MIMO-ISAR 구성에 대한 이미징 재구성을 가속화하기 위해 1D-MIMO-ISAR 범위 스태킹 알고리즘(RSA)을 제안한다. 제안된 1D-MIMO-ISAR RSA는 널리 알려진 Back-Projection 알고리즘과 거의 동일한 이미지 품질을 유지하면서도 수백 밀리초 이내에 이미지를 재구성함으로써 실시간 영상화에 대한 가능성을 보여준다. 또한 물체가 시야에 들어오고 나가는 실제 상황을 고려하기 위한 ROI 설정, 그리고 메모리 할당에 대한 전략을 설명한다. 광범위한 시뮬레이션과 실험을 통해 1D-MIMO-IASR 구성 및 1D-MIMO-ISAR RSA의 가능성과 잠재적 이점을 확인한다.1 INTRODUCTION 1 1.1 Microwave and millimeter-wave imaging 1 1.2 Imaging with radar system 2 1.3 Challenges and motivation 5 1.4 Outline of the dissertation 8 2 FUNDAMENTAL OF TWO-DIMENSIONAL IMAGING USING A MIMO RADAR 9 2.1 Signal model 9 2.2 Consideration of waveform 12 2.3 Image reconstruction algorithm 16 2.3.1 Back-projection algorithm 16 2.3.2 1D-MIMO range-migration algorithm 20 2.3.3 1D-MIMO range stacking algorithm 27 2.4 Sampling criteria and resolution 31 2.5 Simulation results 36 3 MIMO-FMCW RADAR IMPLEMENTATION WITH 16 TX - 16 RX ONE- DIMENSIONAL ARRAYS 46 3.1 Wide-band FMCW waveform generator architecture 46 3.2 Overall system architecture 48 3.3 Antenna and RF transceiver module 53 3.4 Wide-band FMCW waveform generator 55 3.5 FPGA-based digital hardware design 63 3.6 System integration and software design 71 3.7 Testing and measurement 75 3.7.1 Chirp waveform measurement 75 3.7.2 Range profile measurement 77 3.7.3 2-D imaging test 79 4 METHODS OF IMAGE QUALITY ENHANCEMENT 84 4.1 Signal model 84 4.2 Digital pre-distortion of chirp signal 86 4.2.1 Proposed DPD hardware system 86 4.2.2 Proposed DPD algorithm 88 4.2.3 Measurement results 90 4.3 Robust calibration method for signal distortion 97 4.3.1 Signal model 98 4.3.2 Problem formulation 99 4.3.3 Measurement results 105 5 THREE-DIMENSIONAL IMAGING USING 1-D ARRAY SYSTEM AND ISAR TECHNIQUE 110 5.1 Formulation for 1D-MIMO-ISAR RSA 111 5.2 Algorithm implementation 114 5.3 Simulation results 120 5.4 Experimental results 122 6 CONCLUSIONS AND FUTURE WORK 127 6.1 Conclusions 127 6.2 Future work 129 6.2.1 Effects of antenna polarization in the Ku-band 129 6.2.2 Forward-looking near-field ISAR configuration 130 6.2.3 Estimation of the movement errors in ISAR configuration 131 Abstract (In Korean) 145 Acknowlegement 148박

    Improvement of detection and tracking techniques in multistatic passive radar systems. (Mejora de técnicas de detección y seguimiento en sistemas radar pasivos multiestáticos)

    Get PDF
    Esta tesis doctoral es el resultado de una intensa actividad investigadora centrada en los sensores radar pasivos para la mejora de las capacidades de detección y seguimiento en escenarios complejos con blancos terrestres y pequeños drones. El trabajo de investigación se ha llevado a cabo en el grupo de investigación coordinado por la Dra. María Pilar Jarabo Amores, dentro del marco diferentes proyectos: IDEPAR (“Improved DEtection techniques for PAssive Radars”), MASTERSAT (“MultichAnnel paSsive radar receiver exploiting TERrestrial and SATellite Illuminators”) y KRIPTON (“A Knowledge based appRoach to passIve radar detection using wideband sPace adapTive prOcessiNg”) financiados por el Ministerio de Economía y Competitividad de España; MAPIS (Multichannel passive ISAR imaging for military applications) y JAMPAR (“JAMmer-based PAssive Radar”), financiados por la Agencia Europea de Defensa (EDA) . El objetivo principal es la mejora de las técnicas de detección y seguimiento en radares pasivos con configuraciones biestáticas y multiestaticas. En el documento se desarrollan algoritmos para el aprovechamiento de señales procedentes de distintos iluminadores de oportunidad (transmisores DVB-T, satélites DVB-S y señales GPS). Las soluciones propuestas han sido integradas en el demostrador tecnológico IDEPAR, desarrollado y actualizado bajo los proyectos mencionados, y validadas en escenarios reales declarados de interés por potenciales usuarios finales (Direccion general de armamento y material, instituto nacional de tecnología aeroespacial y la armada española). Para el desarrollo y evaluación de cadenas de las cadenas de procesado, se plantean dos casos de estudio: blancos terrestres en escenarios semiurbanos edificios y pequeños blancos aéreos en escenarios rurales y costeros. Las principales contribuciones se pueden resumir en los siguientes puntos: • Diseño de técnicas de seguimiento 2D en el espacio de trabajo rango biestático-frecuencia Doppler: se desarrollan técnicas de seguimiento para los dos casos de estudio, localización de blancos terrestres y pequeños drones. Para es último se implementan técnicas capaces de seguir tanto el movimiento del dron como su firma Doppler, lo que permite implementar técnicas de clasificación de blancos. • Diseño de técnicas de seguimiento de blancos capaces de integrar información en el espacio 3D (rango, Doppler y acimut): se diseñan técnicas basadas en procesado en dos etapas, una primera con seguimiento en 2D para el filtrado de falsas alarmas y la segunda para el seguimiento en 3D y la conversión de coordenadas a un plano local cartesiano. Se comparan soluciones basadas en filtros de Kalman para sistemas tanto lineales como no lineales. • Diseño de cadenas de procesado para sistemas multiestáticos: la información estimada del blanco sobre múltiples geometrías biestáticas es utilizada para incremento de las capacidades de localización del blanco en el plano cartesiano local. Se presentan soluciones basadas en filtros de Kalman para sistemas no lineales explotando diferentes medidas biestáticas en el proceso de transformación de coordenadas, analizando las mejoras de precisión en la localización del blanco. • Diseño de etapas de procesado para radares pasivos basados en señales satelitales de las constelaciones GPS DVB-S. Se estudian las características de las señales satelitales identificando sus inconvenientes y proponiendo cadenas de procesado que permitan su utilización para la detección y seguimiento de blancos terrestres. • Estudio del uso de señales DVB-T multicanal con gaps de transmisión entre los diferentes canales en sistemas radares pasivos. Con ello se incrementa la resolución del sistema, y las capacidades de detección, seguimiento y localización. Se estudia el modelo de señal multicanal, sus efectos sobre el procesado coherente y se proponen cadenas de procesado para paliar los efectos adversos de este tipo de señales
    corecore