11,234 research outputs found

    Realized volatility and absolute return volatility: a comparison indicating market risk

    Get PDF
    Measuring volatility in financial markets is a primary challenge in the theory and practice of risk management and is essential when developing investment strategies. Although the vast literature on the topic describes many different models, two nonparametric measurements have emerged and received wide use over the past decade: realized volatility and absolute return volatility. The former is strongly favored in the financial sector and the latter by econophysicists. We examine the memory and clustering features of these two methods and find that both enable strong predictions. We compare the two in detail and find that although realized volatility has a better short-term effect that allows predictions of near-future market behavior, absolute return volatility is easier to calculate and, as a risk indicator, has approximately the same sensitivity as realized volatility. Our detailed empirical analysis yields valuable guidelines for both researchers and market participants because it provides a significantly clearer comparison of the strengths and weaknesses of the two methods.ZZ, ZQ, BL thank "Econophysics and Complex Networks" fund number R-144-000-313-133 from National University of Singapore (www.nus.sg). TT thanks Japan Society for the Promotion of Science Grant (www.jsps.go.jp/english/e-grants/) Number 25330047. HES thanks Defense Threat Reduction Agency (www.dtra.mil) (Grant HDTRA-1-10-1-0014, Grant HDTRA-1-09-1-0035) and National Science Foundation (www.nsf.gov) (Grant CMMI 1125290). ZZ thanks Chinese Academy of Sciences (english.cas.cn) Grant Number Y4FA030A01. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. (R-144-000-313-133 - National University of Singapore; 25330047 - Japan Society for the Promotion of Science Grant; HDTRA-1-10-1-0014 - Defense Threat Reduction Agency; HDTRA-1-09-1-0035 - Defense Threat Reduction Agency; CMMI 1125290 - National Science Foundation; Y4FA030A01 - Chinese Academy of Sciences)Published versio

    Do Complexity Measures of Frontal EEG Distinguish Loss of Consciousness in Geriatric Patients Under Anesthesia?

    Get PDF
    While geriatric patients have a high likelihood of requiring anesthesia, they carry an increased risk for adverse cognitive outcomes from its use. Previous work suggests this could be mitigated by better intraoperative monitoring using indexes defined by several processed electroencephalogram (EEG) measures. Unfortunately, inconsistencies between patients and anesthetic agents in current analysis techniques have limited the adoption of EEG as standard of care. In attempts to identify new analyses that discriminate clinically-relevant anesthesia timepoints, we tested 1/f frequency scaling as well as measures of complexity from nonlinear dynamics. Specifically, we tested whether analyses that characterize time-delayed embeddings, correlation dimension (CD), phase-space geometric analysis, and multiscale entropy (MSE) capture loss-of-consciousness changes in EEG activity. We performed these analyses on EEG activity collected from a traditionally hard-to-monitor patient population: geriatric patients on beta-adrenergic blockade who were anesthetized using a combination of fentanyl and propofol. We compared these analyses to traditional frequency-derived measures to test how well they discriminated EEG states before and after loss of response to verbal stimuli. We found spectral changes similar to those reported previously during loss of response. We also found significant changes in 1/f frequency scaling. Additionally, we found that our phase-space geometric characterization of time-delayed embeddings showed significant differences before and after loss of response, as did measures of MSE. Our results suggest that our new spectral and complexity measures are capable of capturing subtle differences in EEG activity with anesthesia administration-differences which future work may reveal to improve geriatric patient monitoring

    Statistical mechanics characterization of spatio-compositional inhomogeneity

    Full text link
    On the basis of a model system of pillars built of unit cubes, a two-component entropic measure for the multiscale analysis of spatio-compositional inhomogeneity is proposed. It quantifies the statistical dissimilarity per cell of the actual configurational macrostate and the theoretical reference one that maximizes entropy. Two kinds of disorder compete: i) the spatial one connected with possible positions of pillars inside a cell (the first component of the measure), ii) the compositional one linked to compositions of each local sum of their integer heights into a number of pillars occupying the cell (the second component). As both the number of pillars and sum of their heights are conserved, the upper limit for a pillar height hmax occurs. If due to a further constraint there is the more demanding limit h <= h* < hmax, the exact number of restricted compositions can be then obtained only through the generating function. However, at least for systems with exclusively composition degrees of freedom, we show that the neglecting of the h* is not destructive yet for a nice correlation of the h*-constrained entropic measure and its less demanding counterpart, which is much easier to compute. Given examples illustrate a broad applicability of the measure and its ability to quantify some of the subtleties of a fractional Brownian motion, time evolution of a quasipattern [28,29] and reconstruction of a laser-speckle pattern [2], which are hardly to discern or even missed.Comment: 17 pages, 5 figure

    Adaptive Multiscale Weighted Permutation Entropy for Rolling Bearing Fault Diagnosis

    Get PDF
    © 2020 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.Bearing vibration signals contain non-linear and non-stationary features due to instantaneous variations in the operation of rotating machinery. It is important to characterize and analyze the complexity change of the bearing vibration signals so that bearing health conditions can be accurately identified. Entropy measures are non-linear indicators that are applicable to the time series complexity analysis for machine fault diagnosis. In this paper, an improved entropy measure, termed Adaptive Multiscale Weighted Permutation Entropy (AMWPE), is proposed. Then, a new rolling bearing fault diagnosis method is developed based on the AMWPE and multi-class SVM. For comparison, experimental bearing data are analyzed using the AMWPE, compared with the conventional entropy measures, where a multi-class SVM is adopted for fault type classification. Moreover, the robustness of different entropy measures is further studied for the analysis of noisy signals with various Signal-to-Noise Ratios (SNRs). The experimental results have demonstrated the effectiveness of the proposed method in fault diagnosis of rolling bearing under different fault types, severity degrees, and SNR levels.Peer reviewedFinal Accepted Versio
    • …
    corecore