18 research outputs found

    An improved imaging algorithm for spaceborne MAPs sliding spotlight SAR with high-resolution wide-swath capability

    Get PDF
    Conventional synthetic aperture radar (SAR) systems cannot achieve both high-resolution and wide-swath imaging simultaneously. This problem can be mitigated by employing multiple-azimuth-phases (MAPs) technology for spaceborne sliding spotlight SAR systems. However, traditional imaging algorithms have met challenges to process the data accurately, due to range model error, MAPs data reconstruction problem, high-order cross-coupling phase error and variation of Doppler parameters along the azimuth direction. Therefore, an improved imaging algorithm is proposed for solving the above problems. Firstly, a modified hyperbolic range equation (MHRE) is proposed by introducing a cubic term into the traditional hyperbolic range equation (THRE). And two curved orbit correction methods are derived based on the proposed range model. Then, a MAPs sliding spotlight data reconstruction method is introduced, which solves the spectral aliasing problem by a de-rotation operation. Finally, high-order cross-coupling phases and variation of Doppler parameters are analyzed and the corresponding compensation methods are proposed. Simulation results for point-target scene are provided to verify the effectiveness of the proposed algorithm

    Analyse temps-frequence et traitement des signaux RSO à haute résolution spatiale pour la surveillance des grands ouvrages d'art

    Get PDF
    The thesis is composed of two research axis. The first one consists in proposing time-frequency signal processing tools for frequency modulated continuous wave (FMCW) radars used for displacements measurements, while the second one consists in designing a spaceborne synthetic aperture radar (SAR) signal processing methodology for infrastructure monitoring when an external point cloud of the envisaged structure is available. In the first part of the thesis, we propose our solutions to the nonlinearity problem of an X-band FMCW radar designed for millimetric displacement measurements of short-range targets. The nonlinear tuning curve of the voltage controlled oscillator from the transceiver can cause a dramatic resolution degradation for wideband sweeps. To mitigate this shortcoming, we have developed two time warping-based methods adapted to wideband nonlinearities: one estimates the nonlinear terms using the high order ambiguity function, while the other is an autofocus approach which exploits the spectral concentration of the beat signal. Onwards, as the core of the thesis, we propose a novel method for scattering centers detection and tracking in spaceborne SAR images adapted to infrastructure monitoring applications. The method is based on refocusing each SAR image on a provided 3D point cloud of the envisaged infrastructure and identifying the reliable scatterers to be monitored by means of four dimensional (4D) tomography. The refocusing algorithm is compatible with stripmap, spotlight and sliding spotlight SAR images and consists of an azimuth defocusing followed by a modified back-projection algorithm on the given set of points which exploits the time-frequency structure of the defocused azimuth signal. The scattering centers of the refocused image are detected in the 4D tomography framework by testing if the main response is at zero elevation in the local elevation-velocity spectral distribution. The mean displacement velocity is estimated from the peak response on the zero elevation axis, while the displacements time series for detected single scatterers is computed as double phase difference of complex amplitudes.Finally, we present the measurement campaigns carried out on the Puylaurent water-dam and the Chastel landslide using GPS measurements, topographic surveys and laser scans to generate the point clouds of the two structures. The comparison between in-situ data and the results obtained by combining TerraSAR-X data with the generated point clouds validate the developed SAR signal processing chain.Cette thèse s'articule autour de deux axes de recherche. Le premier axe aborde les aspects méthodologiques liés au traitement temps-fréquence des signaux issus d'un radar FMCW (à onde continue modulée en fréquence) dans le contexte de la mesure des déplacements fins. Le second axe est dédié à la conception et à la validation d'une chaîne de traitement des images RSO (radar à synthèse d'ouverture) satellitaire. Lorsqu'un maillage 3D de la structure envisagée est disponible, les traitements proposés sont validés par l'intercomparaison avec les techniques conventionnelles d'auscultation des grands ouvrages d'art.D'une part, nous étudions la correction de la non-linéarité d'un radar FMCW en bande X, à courte portée, conçu pour la mesure des déplacements millimétriques. La caractéristique de commande non linéaire de l'oscillateur à large bande, entraine une perte de résolution à la réception. Afin de pallier cet inconvénient, nous avons développé deux méthodes basées sur le ré-échantillonnage temporel (time warping) dans le cas des signaux à large bande non-stationnaires. La première approche estime la loi de fréquence instantanée non linéaire à l'aide de la fonction d'ambiguïté d'ordre supérieur, tandis que la deuxième approche exploite la mesure de concentration spectrale du signal de battement dans un algorithme d'autofocus radial.D'autre part, nous proposons un cadre méthodologique général pour la détection et le pistage des centres de diffusion dans les images RSO pour la surveillance des grands ouvrages d'art. La méthode est basée sur la ré-focalisation de chaque image radar sur le maillage 3D de l'infrastructure étudiée afin d'identifier les diffuseurs pertinents par tomographie 4D (distance – azimut – élévation – vitesse de déformation). L'algorithme de ré-focalisation est parfaitement compatible avec les images RSO acquises dans les différents modes (« stripmap », « spotlight » et « sliding spotlight ») : dé-focalisation en azimut suivie par rétroprojection modifiée (conditionnée par la structure temps-fréquence du signal) sur l'ensemble donné des points. Dans la pile d'images ré-focalisées, les centres de diffusion sont détectés par tomographie 4D : test de conformité à l'hypothèse d'élévation zéro dans le plan élévation – vitesse de déformation. La vitesse moyenne correspond au maximum à l'élévation zéro, tandis que la série temporelle des déplacements est obtenue par double différence de phase des amplitudes complexes pour chaque diffuseur pertinent.Nous présentons également les campagnes in situ effectuées au barrage de Puylaurent (et glissement de Chastel) : les relevés GPS, topographiques et LIDAR sol employées au calcul des maillages 3D. La comparaison entre les déplacements mesurés in situ et les résultats obtenus par l'exploitation conjointe de la télédétection RSO satellitaires et les maillages 3D valident la chaîne de traitement proposée.Teza cuprinde două axe principale de cercetare. Prima axă abordează aspecte metodologice de prelucraretimp-frecvenţă a semnalelor furnizate de radare cu emisie continuă şi modulaţie de frecvenţă (FMCW)în contextul măsurării deplasărilor milimetrice. În cadrul celei de-a doua axe, este proiectată şi validatăo metodă de prelucrare a imaginilor satelitare SAR (radar cu apertură sintetică) ce este destinatămonitorizării infrastructurii critice şi care se bazează pe existenţa unui model 3D al structurii respective.În prima parte a tezei, sunt investigate soluţii de corecţie a neliniarităţii unui radar FMCW în bandaX destinat măsurării deplasărilor milimetrice. Caracteristica de comandă neliniară a oscilatorului debandă largă determină o degradare a rezoluţiei în distanţă. Pentru a rezolva acest inconvenient, au fostelaborate două metode de corecţie a neliniarităţii, adaptate pentru semnale de bandă largă, ce se bazeazăpe conceptul de reeşantionare neuniformă sau deformare a axei temporare. Prima abordare estimeazăparametrii neliniarităţii utilizând funcţii de ambiguitate de ordin superior, iar cea de-a doua exploateazăo măsură de concentraţie spectrală a semnalului de bătăi într-un algoritm de autofocalizare în distanţă.În a doua parte a lucrării, este propusă o metodologie generală de detecţie şi monitorizare a centrilorde împrăştiere în imagini SAR în scopul monitorizării elementelor de infrastructură critică. Metoda sebazează pe refocalizarea fiecărei imagini radar pe un model 3D al structurii investigate în scopul identificăriicentrilor de împrăştiere pertinenţi (ţinte fiabile ce pot fi monitorizate în timp) cu ajutorul tomografiei SAR4D (distanţă-azimut-elevaţie-viteză de deplasare). Algoritmul de refocalizare este compatibil cu imaginiSAR achiziţionate în moduri diferite (« stripmap », « spotlight » şi « sliding spotlight ») şi constă într-odefocalizare în azimut urmată de o retroproiecţie modificată (condiţionată de structura timp-frecvenţă asemnalului) pe modelul 3D al structurii. Ţintele sunt identificate în stiva de imagini refocalizate cu ajutorultomografiei 4D prin efectuarea unui test de conformitate cu ipoteza că centrii de împrăştiere pertinenţivor avea elevaţie zero în planul local elevaţie-viteză. Viteza medie de deformare corespunde maximuluide pe axa de elevaţie nulă, iar seria temporară a deplasărilor se obţine printr-o dublă diferenţă de fază aamplitudinilor complexe corespunzătoare ţintelor identificate.În final sunt prezentate campaniile de măsurători pe teren efectuate la un baraj şi o alunecare de terendin regiunea Puylaurent (Franţa) destinate obţinerii modelului 3D al celor două elemente de infrastructurăprin măsurători GPS, topografice şi LIDAR. Comparaţia între deformările măsurate pe teren şi rezultateleobţinute prin combinarea imaginilor SAR cu modelele 3D au permis validarea metodologiei propuse

    Wide-Angle Multistatic Synthetic Aperture Radar: Focused Image Formation and Aliasing Artifact Mitigation

    Get PDF
    Traditional monostatic Synthetic Aperture Radar (SAR) platforms force the user to choose between two image types: larger, low resolution images or smaller, high resolution images. Switching to a Wide-Angle Multistatic Synthetic Aperture Radar (WAM-SAR) approach allows formation of large high-resolution images. Unfortunately, WAM-SAR suffers from two significant implementation problems. First, wavefront curvature effects, non-linear flight paths, and warped ground planes lead to image defocusing with traditional SAR processing methods. A new 3-D monostatic/bistatic image formation routine solves the defocusing problem, correcting for all relevant wide-angle effects. Inverse SAR (ISAR) imagery from a Radar Cross Section (RCS) chamber validates this approach. The second implementation problem stems from the large Doppler spread in the wide-angle scene, leading to severe aliasing problems. This research effort develops a new anti-aliasing technique using randomized Stepped-Frequency (SF) waveforms to form Doppler filter nulls coinciding with aliasing artifact locations. Both simulation and laboratory results demonstrate effective performance, eliminating more than 99% of the aliased energy

    Traceable Radiometric Calibration of Synthetic Aperture Radars

    Get PDF
    Synthetic aperture radar (SAR) systems allow to quantitatively measure the radar backscatter of an imaged terrain region. In order to achieve comparability between measurement results, traceable radiometric calibration is indispensable. The central claim of the work is that nowadays, however, radiometric SAR measurements are not traceably calibrated. In order to resolve this problem, five contributions are made: (a) The new measurement quantity “equivalent radar cross section” (ERCS) is defined. (b) A numerical approach for linking the known quantity “radar cross section” (RCS) with the novel ERCS is introduced. (c) The effect of the chosen apodization functions on radiometric measurements is analytically investigated. (d) The novel three-transponder method is developed which allows accurate RCS calibrations of SAR transponders. (e) The method of hierarchical Bayesian data analysis is introduced to the field of radiometric SAR calibration. The achieved traceability for radiometric SAR measurements allows more accurate radiometric measurement results especially for modern, high-resolution SAR systems. Furthermore, data exchange and cooperation is facilitated

    Radar Imaging in Challenging Scenarios from Smart and Flexible Platforms

    Get PDF
    undefine

    Frequency-modulated continuous-wave synthetic-aperture radar: improvements in signal processing

    Get PDF
    With the advance of solid state devices, frequency-modulated continuous-wave (FMCW) designs have recently been used in synthetic-aperture radar (SAR) to decrease cost, size, weight and power consumption, making it deployable on smaller mobile plat-forms, including small (< 25 kg) unmanned aerial vehicle(s) (UAV). To foster its mobile uses, several SAR capabilities were studied: moving target indication (MTI) for increased situational awareness, bistatic operation, e.g. in UAV formation flights, for increased range, and signal processing algorithms for faster real-time performance. Most off-the-shelf SAR systems for small mobile platforms are commercial proprie-tary and/or military (ITAR, International Trades in Arms Regulations) restricted. As such, it necessitated the design and build of a prototype FMCW SAR system at the early stage to serve as a research tool. This enabled unrestricted hardware and software modifica-tions and experimentation. A model to analyze the triangularly modulated (TM) linear frequency modulated (LFM) waveform as one signal was established and used to develop a MTI algorithm which is effective for slow moving targets detection. Experimental field data collected by the prototyped FMCW SAR was then used to validate and demonstrate the effectiveness of the proposed MTI method. A bistatic FMCW SAR model was next introduced: Bistatic configuration is a poten-tial technique to overcome the power leakage problem in monostatic FMCW SAR. By mounting the transmitter and receiver on spatially separate mobile (UAV) platforms in formation deployment, the operation range of a bistatic FMCW SAR can be significantly improved. The proposed approximation algorithm established a signal model for bistatic FMCW SAR by using the Fresnel approximation. This model allows the existing signal processing algorithms to be used in bistatic FMCW SAR image generation without sig-nificant modification simplifying bistatic FMCW SAR signal processing. The proposed range migration algorithm is a versatile and efficient FMCW SAR sig-nal processing algorithm which requires less memory and computational load than the traditional RMA. This imaging algorithm can be employed for real-time image genera-tion by the FMCW SAR system on mobile platforms. Simulation results verified the pro-posed spectral model and experimental data demonstrated the effectiveness of the modi-fied RMA

    Contribution to ground-based and UAV SAR systems for Earth observation

    Get PDF
    Mankind's way of life is the main driver of a planetary-scale change that is marked by the growing of human population's demand of energy, food, goods, services and information. As a result, it have emerged new ecological, economical, social and geopolitical concerns. In this scenario, SAR remote sensing is a potential tool that provides unique information about the Earth's properties and processes that can be used to solve societal challenges of local and global dimension. SARs, which are coherent systems that are able to provide high resolution images with weather independence, represent a suitable alternative for EO with diverse applications. Some examples of SAR application areas are topography (DEM generation with interferometry), agriculture (crop classification or soil moisture), or geology (monitoring surface deformation). In this framework, the encompassing objective of the present doctoral work has been part of the implementation and the subsequent evaluation of capabilities of two X-band SAR sensors. On the one hand, the RISKSAR-X radar designed to be operated at ground to monitor small-scale areas of observation and, on the other, the ARBRES-X sensor designed to be integrated into small UAVs. Despite its inherently dissimilar conception, the concurrence of both sensors has been evidenced along this manuscript. By taking advantage of the similarities between them, it has been possible to analogously assess both sensors to obtain conclusions. In this context, the common link has been the development of the polarimetric OtF operation mode of the RISKSAR-X, allowing this sensor to be operated equivalently to the ARBRES-X. Regarding the RISKSAR-X SAR sensor, several hardware contributions have been developed during part of this Ph.D. with the aim of improving the system performance. By endowing the system with the capability to operate in the fully polarimetric OtF acquisition mode, the relative long scanning time has been reduced. It is of great interest since the measured scatterers that present a short term variable reflectivity during the scanning time, such as moving vegetation, may degrade the extracted parameters from the retrieved data and the SAR image reconstruction. During this doctoral activity, it has been studied the image blurring, the decorrelation and the coherence degradation introduced by this effect. Furthermore, a new term in the differential interferometric coherence that takes into account the image blurring has been introduced. Concerning the ARBRES-X SAR system, one of the main objectives pursued during this Ph.D. has been the integration of the sensor into a small UAV MP overcoming restrictions of weight, size and aerodynamics of the platform. The use of this type of platforms is expected to open up new possibilities in airborne SAR remote sensing, since it offers much more versatility than the commonly used fixed wings UAVs. Different innovative flight strategies with this type of platforms have been assessed and some preliminary results have been obtained with the use of the ARBRES-X SAR system. During the course of the present doctoral work, much effort has been devoted to achieve the first experimental repeat-pass interfereometric results obtained with the UAV MP together with the ARBRES-X. Moreover, the sensor has been endowed with fully polarimetric capabilities by applying the improvements developed to the RISKSAR-X radar, which is another example of the duality between both systems. Finally, a vertical and a semicircular aperture have been successfully performed obtaining SLC images of the scenario, which envisages the capability of the UAV MP to perform tomographic images and complete circular apertures in the future. In conclusion, the UAV MP is a promising platform that opens new potentials for several applications, such as repeat-pass interferometry or differential tomography imaging with the realization of almost arbitrary trajectories.El mode de viure de la humanitat és el principal motor d'un canvi a escala planetària que està marcat per la creixent demanda d'energia, d'aliment, de béns, de serveis i d'informació de les poblacions humanes. Com a resultat, han sorgit noves inquietuds ecològiques, econòmiques, socials i geopolítiques. En aquest escenari, la detecció remota SAR és una eina potencial que proporciona informació única sobre les propietats i processos de la Terra que es pot utilitzar per resoldre reptes socials de dimensió local i global. Els SARs, que són sistemes coherents que poden proporcionar imatges d'alta resolució amb independència del temps, representen una alternativa adequada per a l'observació de la Terra. Alguns exemples d'àrees d'aplicació SAR són la topografia (generació de DEM amb interferometria), l'agricultura (classificació de cultius o humitat del sòl) o la geologia (monitoratge de deformació superficial). En aquest context, l'objectiu general del present doctorat ha estat part de la implementació i posterior avaluació de les capacitats de dos sensors SAR de banda X. D'una banda, el radar RISKSAR-X dissenyat per funcionar a terra i monitoritzar àrees d'observació a petita escala i, d'altra, el sensor ARBRES-X dissenyat per ser integrat en petits UAVs. Malgrat la seva concepció inherentment diferent, la concurrència d'ambdós sensors s'ha evidenciat al llarg d'aquest manuscrit. Aprofitant les similituds entre ells, s'han pogut avaluar de forma anàloga els dos sensors per obtenir conclusions. En aquest sentit, el vincle comú ha estat el desenvolupament del mode de funcionament polimètric OtF del RISKSAR-X, permetent que aquest sensor operi de forma equivalent a l'ARBRES-X. Pel que fa al sensor RISKSAR-X, s'han desenvolupat diverses contribucions hardware durant part d'aquest doctorat amb l'objectiu de millorar el rendiment del sistema. En dotar el sistema de la possibilitat d'operar en el mode d'adquisició totalment polarimètric OtF, s'ha reduït el relatiu llarg temps d'escaneig. Això és de gran interès ja que els blancs mesurats que presenten una reflectivitat variable a curt termini, com ara la vegetació en moviment, poden degradar els paràmetres extrets de les dades recuperades i la reconstrucció d'imatges SAR. Durant aquesta activitat doctoral s'ha estudiat el desenfocat de la imatge, la decorrelació i la degradació de la coherència introduïts per aquest efecte. A més, s'ha introduït un nou terme en la coherència interferomètrica diferencial que té en compte el desenfocat de la imatge. Pel que fa al sistema ARBRES-X, un dels principals objectius perseguits durant aquest doctorat ha estat la integració del sensor en un petit UAV MP superant les restriccions de pes, grandària i aerodinàmica de la plataforma. S'espera que l'ús d'aquest tipus de plataformes obri noves possibilitats en la detecció remota SAR aerotransportada, ja que ofereix molta més versatilitat que els UAV d'ales fixes habituals. S'han avaluat diferents estratègies de vol innovadores amb aquest tipus de plataformes i s'han obtingut resultats preliminars amb l'ús del sistema ARBRES-X. Durant el transcurs del present treball, s'ha dedicat molt esforç a assolir els primers resultats experimentals d'interferometria de múltiple passada obtinguts amb l'UAV MP conjuntament amb l'ARBRES-X. A més, el sensor ha estat dotat de capacitats totalment polarimètriques aplicant les millores desenvolupades al radar RISKSAR-X, el qual constitueix un altre exemple de la dualitat entre ambdós sistemes. Finalment, s'han realitzat amb èxit una apertura vertical i semicircular obtenint imatges SLC de l'escenari, el qual permet preveure la capacitat de l'UAV MP per a realitzar imatges tomogràfiques i apertures circulars completes en el futur. En conclusió, l'UAV MP és una plataforma prometedora que obre nous potencials per a diverses aplicacions, com ara la interferometria de múltiple passada o la tomografia diferencial amb la realització de trajectòries gairebé arbitràries.Postprint (published version

    Contribution to ground-based and UAV SAR systems for Earth observation

    Get PDF
    Mankind's way of life is the main driver of a planetary-scale change that is marked by the growing of human population's demand of energy, food, goods, services and information. As a result, it have emerged new ecological, economical, social and geopolitical concerns. In this scenario, SAR remote sensing is a potential tool that provides unique information about the Earth's properties and processes that can be used to solve societal challenges of local and global dimension. SARs, which are coherent systems that are able to provide high resolution images with weather independence, represent a suitable alternative for EO with diverse applications. Some examples of SAR application areas are topography (DEM generation with interferometry), agriculture (crop classification or soil moisture), or geology (monitoring surface deformation). In this framework, the encompassing objective of the present doctoral work has been part of the implementation and the subsequent evaluation of capabilities of two X-band SAR sensors. On the one hand, the RISKSAR-X radar designed to be operated at ground to monitor small-scale areas of observation and, on the other, the ARBRES-X sensor designed to be integrated into small UAVs. Despite its inherently dissimilar conception, the concurrence of both sensors has been evidenced along this manuscript. By taking advantage of the similarities between them, it has been possible to analogously assess both sensors to obtain conclusions. In this context, the common link has been the development of the polarimetric OtF operation mode of the RISKSAR-X, allowing this sensor to be operated equivalently to the ARBRES-X. Regarding the RISKSAR-X SAR sensor, several hardware contributions have been developed during part of this Ph.D. with the aim of improving the system performance. By endowing the system with the capability to operate in the fully polarimetric OtF acquisition mode, the relative long scanning time has been reduced. It is of great interest since the measured scatterers that present a short term variable reflectivity during the scanning time, such as moving vegetation, may degrade the extracted parameters from the retrieved data and the SAR image reconstruction. During this doctoral activity, it has been studied the image blurring, the decorrelation and the coherence degradation introduced by this effect. Furthermore, a new term in the differential interferometric coherence that takes into account the image blurring has been introduced. Concerning the ARBRES-X SAR system, one of the main objectives pursued during this Ph.D. has been the integration of the sensor into a small UAV MP overcoming restrictions of weight, size and aerodynamics of the platform. The use of this type of platforms is expected to open up new possibilities in airborne SAR remote sensing, since it offers much more versatility than the commonly used fixed wings UAVs. Different innovative flight strategies with this type of platforms have been assessed and some preliminary results have been obtained with the use of the ARBRES-X SAR system. During the course of the present doctoral work, much effort has been devoted to achieve the first experimental repeat-pass interfereometric results obtained with the UAV MP together with the ARBRES-X. Moreover, the sensor has been endowed with fully polarimetric capabilities by applying the improvements developed to the RISKSAR-X radar, which is another example of the duality between both systems. Finally, a vertical and a semicircular aperture have been successfully performed obtaining SLC images of the scenario, which envisages the capability of the UAV MP to perform tomographic images and complete circular apertures in the future. In conclusion, the UAV MP is a promising platform that opens new potentials for several applications, such as repeat-pass interferometry or differential tomography imaging with the realization of almost arbitrary trajectories.El mode de viure de la humanitat és el principal motor d'un canvi a escala planetària que està marcat per la creixent demanda d'energia, d'aliment, de béns, de serveis i d'informació de les poblacions humanes. Com a resultat, han sorgit noves inquietuds ecològiques, econòmiques, socials i geopolítiques. En aquest escenari, la detecció remota SAR és una eina potencial que proporciona informació única sobre les propietats i processos de la Terra que es pot utilitzar per resoldre reptes socials de dimensió local i global. Els SARs, que són sistemes coherents que poden proporcionar imatges d'alta resolució amb independència del temps, representen una alternativa adequada per a l'observació de la Terra. Alguns exemples d'àrees d'aplicació SAR són la topografia (generació de DEM amb interferometria), l'agricultura (classificació de cultius o humitat del sòl) o la geologia (monitoratge de deformació superficial). En aquest context, l'objectiu general del present doctorat ha estat part de la implementació i posterior avaluació de les capacitats de dos sensors SAR de banda X. D'una banda, el radar RISKSAR-X dissenyat per funcionar a terra i monitoritzar àrees d'observació a petita escala i, d'altra, el sensor ARBRES-X dissenyat per ser integrat en petits UAVs. Malgrat la seva concepció inherentment diferent, la concurrència d'ambdós sensors s'ha evidenciat al llarg d'aquest manuscrit. Aprofitant les similituds entre ells, s'han pogut avaluar de forma anàloga els dos sensors per obtenir conclusions. En aquest sentit, el vincle comú ha estat el desenvolupament del mode de funcionament polimètric OtF del RISKSAR-X, permetent que aquest sensor operi de forma equivalent a l'ARBRES-X. Pel que fa al sensor RISKSAR-X, s'han desenvolupat diverses contribucions hardware durant part d'aquest doctorat amb l'objectiu de millorar el rendiment del sistema. En dotar el sistema de la possibilitat d'operar en el mode d'adquisició totalment polarimètric OtF, s'ha reduït el relatiu llarg temps d'escaneig. Això és de gran interès ja que els blancs mesurats que presenten una reflectivitat variable a curt termini, com ara la vegetació en moviment, poden degradar els paràmetres extrets de les dades recuperades i la reconstrucció d'imatges SAR. Durant aquesta activitat doctoral s'ha estudiat el desenfocat de la imatge, la decorrelació i la degradació de la coherència introduïts per aquest efecte. A més, s'ha introduït un nou terme en la coherència interferomètrica diferencial que té en compte el desenfocat de la imatge. Pel que fa al sistema ARBRES-X, un dels principals objectius perseguits durant aquest doctorat ha estat la integració del sensor en un petit UAV MP superant les restriccions de pes, grandària i aerodinàmica de la plataforma. S'espera que l'ús d'aquest tipus de plataformes obri noves possibilitats en la detecció remota SAR aerotransportada, ja que ofereix molta més versatilitat que els UAV d'ales fixes habituals. S'han avaluat diferents estratègies de vol innovadores amb aquest tipus de plataformes i s'han obtingut resultats preliminars amb l'ús del sistema ARBRES-X. Durant el transcurs del present treball, s'ha dedicat molt esforç a assolir els primers resultats experimentals d'interferometria de múltiple passada obtinguts amb l'UAV MP conjuntament amb l'ARBRES-X. A més, el sensor ha estat dotat de capacitats totalment polarimètriques aplicant les millores desenvolupades al radar RISKSAR-X, el qual constitueix un altre exemple de la dualitat entre ambdós sistemes. Finalment, s'han realitzat amb èxit una apertura vertical i semicircular obtenint imatges SLC de l'escenari, el qual permet preveure la capacitat de l'UAV MP per a realitzar imatges tomogràfiques i apertures circulars completes en el futur. En conclusió, l'UAV MP és una plataforma prometedora que obre nous potencials per a diverses aplicacions, com ara la interferometria de múltiple passada o la tomografia diferencial amb la realització de trajectòries gairebé arbitràries

    Elevation and Deformation Extraction from TomoSAR

    Get PDF
    3D SAR tomography (TomoSAR) and 4D SAR differential tomography (Diff-TomoSAR) exploit multi-baseline SAR data stacks to provide an essential innovation of SAR Interferometry for many applications, sensing complex scenes with multiple scatterers mapped into the same SAR pixel cell. However, these are still influenced by DEM uncertainty, temporal decorrelation, orbital, tropospheric and ionospheric phase distortion and height blurring. In this thesis, these techniques are explored. As part of this exploration, the systematic procedures for DEM generation, DEM quality assessment, DEM quality improvement and DEM applications are first studied. Besides, this thesis focuses on the whole cycle of systematic methods for 3D & 4D TomoSAR imaging for height and deformation retrieval, from the problem formation phase, through the development of methods to testing on real SAR data. After DEM generation introduction from spaceborne bistatic InSAR (TanDEM-X) and airborne photogrammetry (Bluesky), a new DEM co-registration method with line feature validation (river network line, ridgeline, valley line, crater boundary feature and so on) is developed and demonstrated to assist the study of a wide area DEM data quality. This DEM co-registration method aligns two DEMs irrespective of the linear distortion model, which improves the quality of DEM vertical comparison accuracy significantly and is suitable and helpful for DEM quality assessment. A systematic TomoSAR algorithm and method have been established, tested, analysed and demonstrated for various applications (urban buildings, bridges, dams) to achieve better 3D & 4D tomographic SAR imaging results. These include applying Cosmo-Skymed X band single-polarisation data over the Zipingpu dam, Dujiangyan, Sichuan, China, to map topography; and using ALOS L band data in the San Francisco Bay region to map urban building and bridge. A new ionospheric correction method based on the tile method employing IGS TEC data, a split-spectrum and an ionospheric model via least squares are developed to correct ionospheric distortion to improve the accuracy of 3D & 4D tomographic SAR imaging. Meanwhile, a pixel by pixel orbit baseline estimation method is developed to address the research gaps of baseline estimation for 3D & 4D spaceborne SAR tomography imaging. Moreover, a SAR tomography imaging algorithm and a differential tomography four-dimensional SAR imaging algorithm based on compressive sensing, SAR interferometry phase (InSAR) calibration reference to DEM with DEM error correction, a new phase error calibration and compensation algorithm, based on PS, SVD, PGA, weighted least squares and minimum entropy, are developed to obtain accurate 3D & 4D tomographic SAR imaging results. The new baseline estimation method and consequent TomoSAR processing results showed that an accurate baseline estimation is essential to build up the TomoSAR model. After baseline estimation, phase calibration experiments (via FFT and Capon method) indicate that a phase calibration step is indispensable for TomoSAR imaging, which eventually influences the inversion results. A super-resolution reconstruction CS based study demonstrates X band data with the CS method does not fit for forest reconstruction but works for reconstruction of large civil engineering structures such as dams and urban buildings. Meanwhile, the L band data with FFT, Capon and the CS method are shown to work for the reconstruction of large manmade structures (such as bridges) and urban buildings
    corecore