864 research outputs found

    P and M class phasor measurement unit algorithms using adaptive cascaded filters

    Get PDF
    The new standard C37.118.1 lays down strict performance limits for phasor measurement units (PMUs) under steady-state and dynamic conditions. Reference algorithms are also presented for the P (performance) and M (measurement) class PMUs. In this paper, the performance of these algorithms is analysed during some key signal scenarios, particularly those of off-nominal frequency, frequency ramps, and harmonic contamination. While it is found that total vector error (TVE) accuracy is relatively easy to achieve, the reference algorithm is not able to achieve a useful ROCOF (rate of change of frequency) accuracy. Instead, this paper presents alternative algorithms for P and M class PMUs which use adaptive filtering techniques in real time at up to 10 kHz sample rates, allowing consistent accuracy to be maintained across a ±33% frequency range. ROCOF errors can be reduced by factors of >40 for P class and >100 for M class devices

    P-class phasor measurement unit algorithms using adaptive filtering to enhance accuracy at off-nominal frequencies

    Get PDF
    While the present standard C.37.118-2005 for Phasor Measurement Units (PMUs) requires testing only at steady-state conditions, proposed new versions of the standard require much more stringent testing, involving frequency ramps and off-nominal frequency testing. This paper presents two new algorithms for “P Class” PMUs which enable performance at off-nominal frequencies to be retained at levels comparable to the performance for nominal frequency input. The performances of the algorithms are compared to the “Basic” Synchrophasor Estimation Model described in the new standard. The proposed algorithms show a much better performance than the “Basic” algorithm, particularly in the measurements of frequency and rate-of-change-of-frequency at off-nominal frequencies and in the presence of unbalance and harmonics

    PMU-Based ROCOF Measurements: Uncertainty Limits and Metrological Significance in Power System Applications

    Full text link
    In modern power systems, the Rate-of-Change-of-Frequency (ROCOF) may be largely employed in Wide Area Monitoring, Protection and Control (WAMPAC) applications. However, a standard approach towards ROCOF measurements is still missing. In this paper, we investigate the feasibility of Phasor Measurement Units (PMUs) deployment in ROCOF-based applications, with a specific focus on Under-Frequency Load-Shedding (UFLS). For this analysis, we select three state-of-the-art window-based synchrophasor estimation algorithms and compare different signal models, ROCOF estimation techniques and window lengths in datasets inspired by real-world acquisitions. In this sense, we are able to carry out a sensitivity analysis of the behavior of a PMU-based UFLS control scheme. Based on the proposed results, PMUs prove to be accurate ROCOF meters, as long as the harmonic and inter-harmonic distortion within the measurement pass-bandwidth is scarce. In the presence of transient events, the synchrophasor model looses its appropriateness as the signal energy spreads over the entire spectrum and cannot be approximated as a sequence of narrow-band components. Finally, we validate the actual feasibility of PMU-based UFLS in a real-time simulated scenario where we compare two different ROCOF estimation techniques with a frequency-based control scheme and we show their impact on the successful grid restoration.Comment: Manuscript IM-18-20133R. Accepted for publication on IEEE Transactions on Instrumentation and Measurement (acceptance date: 9 March 2019

    Accuracy and Reliability Improvement of Wide-Area Power Grid Monitoring

    Get PDF
    Phasor Measurement Unit (PMU) is one of the key elements of wide area measurement systems (WAMS) in advanced power system monitoring, protection, and control applications. Frequency Disturbance Recorder (FDR) developed by the Power IT Laboratory at the University of Tennessee, is a low-cost and single-phase PMU used at the distribution level. Traditional PMUs use GPS as the only timing source. They will stop working when GPS signal is lost or unstable. Two alternative GPS independent timing sources including eLoran and Chip Scale Atomic Clock were tested for long-term reliability and short-term accuracy to study the application of the two methods in synchrophasor measurement area. Phasor measurement accuracy is of great concern for power grid researchers and operators. The hardware and software measurement algorithm of the FDRs were analyzed to study the error sources. The hardware of the FDRs was upgraded based on the analysis to improve measurement accuracy. Further, two different phasor measurement algorithms that are based on discrete Fourier Transform (DFT) and signal model will be introduced, respectively. The aim is to improve the phasor measurement accuracy under different steady-state and dynamic conditions as well as in a real power grid environment at the distribution level. Moreover, to better evaluate the measurement accuracy of PMUs, a PMU testing system was built. A calibration method that can compensate the time delay of the PMU testing system was proposed, and the testing results were compared to NIST to verify the accuracy of the PMU testing system after calibration. At last, a concept of “Universal Grid Analyzer” (UGA) was proposed and a prototype was built. The UGA has improved phasor measurement accuracy thanks to the proposed adaptive high-accuracy synchronous sampling algorithm and high-precision ADC. Meanwhile, the UGA can also function as a synchronized power quality analyzer that has harmonics measurement, voltage sag and swell detection functions. Moreover, the noise analysis function of the UGA that can help the analysis of phasor measurement accuracy in a real power grid environment was developed

    Filter design masks for C37.118.1a-compliant frequency-tracking and fixed-filter M-class Phasor Measurement Units (PMUs)

    Get PDF
    The new amendment to the Phasor Measurement Unit (PMU) standard C37.118.1a makes several significant changes, compared to the standard C37.118.1 (2011). This paper highlights some of the most important changes, with a particular emphasis applied to how those changes relate to the way that an M-class PMU filter needs to be designed. In particular, there is a delicate trade-off between passband flatness (the bandwidth test) and stopband rejection in the Out-Of-Band (OOB) test. For a PMU algorithm using frequency-tracking and adaptive filters, it is shown that passband flatness can be relaxed to about 2.5dB, but that the stopband needs to begin up to 14.8% closer to 0 Hz than for a fixed-filter PMU. This is partly due to the exact procedures of the C37.118.1a “OOB” testing, and partly due to the adaptive nature of a frequency-tracking PMU filter section. Both the above lead to modified filter masks being required for frequency-tracking devices, compared to the mask required for fixed-filter devices. The M-class PMU with reporting rate 25Hz is the most difficult to design, for reasons given in this paper. The validity of the masks is shown using filter bode plots and simulated C37.118.1a test results of a fixed-filter and frequency-tracking device which have been designed to meet the masks defined in this paper

    Performance Improvement of Wide-Area-Monitoring-System (WAMS) and Applications Development

    Get PDF
    Wide area monitoring system (WAMS), as an application of situation awareness, provides essential information for power system monitoring, planning, operation, and control. To fully utilize WAMS in smart grid, it is important to investigate and improve its performance, and develop advanced applications based on the data from WAMS. In this dissertation, the work on improving the WAMS performance and developing advanced applications are introduced.To improve the performance of WAMS, the work includes investigation of the impacts of measurement error and the requirements of system based on WAMS, and the solutions. PMU is one of the main sensors for WAMS. The phasor and frequency estimation algorithms implemented highly influence the performance of PMUs, and therefore the WAMS. The algorithms of PMUs are reviewed in Chapter 2. To understand how the errors impact WAMS application, different applications are investigated in Chapter 3, and their requirements of accuracy are given. In chapter 4, the error model of PMUs are developed, regarding different parameters of input signals and PMU operation conditions. The factors influence of accuracy of PMUs are analyzed in Chapter 5, including both internal and external error sources. Specifically, the impacts of increase renewables are analyzed. Based on the analysis above, a novel PMU is developed in Chapter 6, including algorithm and realization. This PMU is able to provide high accurate and fast responding measurements during both steady and dynamic state. It is potential to improve the performance of WAMS. To improve the interoperability, the C37.118.2 based data communication protocol is curtailed and realized for single-phase distribution-level PMUs, which are presented in Chapter 7.WAMS-based applications are developed and introduced in Chapter 8-10. The first application is to use the spatial and temporal characterization of power system frequency for data authentication, location estimation and the detection of cyber-attack. The second application is to detect the GPS attack on the synchronized time interval. The third application is to detect the geomagnetically induced currents (GIC) resulted from GMD and EMP-E3. These applications, benefited from the novel PMU proposed in Chapter 6, can be used to enhance the security and robust of power system

    Image Embedding of PMU Data for Deep Learning towards Transient Disturbance Classification

    Full text link
    This paper presents a study on power grid disturbance classification by Deep Learning (DL). A real synchrophasor set composing of three different types of disturbance events from the Frequency Monitoring Network (FNET) is used. An image embedding technique called Gramian Angular Field is applied to transform each time series of event data to a two-dimensional image for learning. Two main DL algorithms, i.e. CNN (Convolutional Neural Network) and RNN (Recurrent Neural Network) are tested and compared with two widely used data mining tools, the Support Vector Machine and Decision Tree. The test results demonstrate the superiority of the both DL algorithms over other methods in the application of power system transient disturbance classification.Comment: An updated version of this manuscript has been accepted by the 2018 IEEE International Conference on Energy Internet (ICEI), Beijing, Chin

    An Analysis of Software and Hardware Development in the PMU-Based Technology and Suggestions Regarding Its Implementation in the Polish Power Grid

    Get PDF
    The ongoing evolution of electric power systems (EPS), especially distribution systems within the EPS structure, is driven by the implementation of the smart grid framework. This requires new approaches and technologies to continue ensuring a reliable and secure supply to end users. Fluctuating output from solar photovoltaic and wind plants can cause voltage and power variations in the feeders. In the power grid framework, phasor measurement units (PMUs) are recognized to be an invaluable aid in ensuring the secure operation and stability of transmission systems. The synchrophasor technique requires a high-accuracy time stamping of all the measurements within the analyzed power system area. It must be emphasized that the harmonic injection from power electronic components such as fluorescent lighting, computers, and power inverters of motors and generators can increase total harmonic distortion (THD) levels on distribution feeders and modify the conventional patterns of voltage and current signals. Therefore, what is vital for the functional reliability of synchronous measurements is the implementation of measurement algorithms, which can realize high-accuracy measurements, both in quasi-static and dynamic EPS operating conditions. This article presents the results of software simulations and hardware tests of measurement algorithms that meet the requirements of the IEEE C37.118ℱ-2011 Standard
    • 

    corecore