540 research outputs found

    Fair Coexistence of Scheduled and Random Access Wireless Networks: Unlicensed LTE/WiFi

    Get PDF
    We study the fair coexistence of scheduled and random access transmitters sharing the same frequency channel. Interest in coexistence is topical due to the need for emerging unlicensed LTE technologies to coexist fairly with WiFi. However, this interest is not confined to LTE/WiFi as coexistence is likely to become increasingly commonplace in IoT networks and beyond 5G. In this article we show that mixing scheduled and random access incurs and inherent throughput/delay cost, the cost of heterogeneity. We derive the joint proportional fair rate allocation, which casts useful light on current LTE/WiFi discussions. We present experimental results on inter-technology detection and consider the impact of imperfect carrier sensing.Comment: 14 pages, 8 figures, journa

    Market Based Approaches for Dynamic Spectrum Assignment

    Get PDF
    Abstract—Much of the technical literature on spectrum sharing has been on developing technologies and systems for non-cooperative) opportunistic use. In this paper, we situate this approach to secondary spectrum use in a broader context, one that includes cooperative approaches to Dynamic Spectrum Access (DSA). In this paper, we introduce readers to this broader approach to DSA by contrasting it with non-cooperative sharing (opportunistic use), surveying relevant literature, and suggesting future directions for researc

    Multipath streaming: fundamental limits and efficient algorithms

    Get PDF
    We investigate streaming over multiple links. A file is split into small units called chunks that may be requested on the various links according to some policy, and received after some random delay. After a start-up time called pre-buffering time, received chunks are played at a fixed speed. There is starvation if the chunk to be played has not yet arrived. We provide lower bounds (fundamental limits) on the starvation probability of any policy. We further propose simple, order-optimal policies that require no feedback. For general delay distributions, we provide tractable upper bounds for the starvation probability of the proposed policies, allowing to select the pre-buffering time appropriately. We specialize our results to: (i) links that employ CSMA or opportunistic scheduling at the packet level, (ii) links shared with a primary user (iii) links that use fair rate sharing at the flow level. We consider a generic model so that our results give insight into the design and performance of media streaming over (a) wired networks with several paths between the source and destination, (b) wireless networks featuring spectrum aggregation and (c) multi-homed wireless networks.Comment: 24 page

    Enforcement and Network Capacity in Spectrum Sharing: Quantifying the Benefits of Different Enforcement Scenarios

    Get PDF
    Recent studies have forecasted major growth in mobile broadband traffic. Due to the predicted high growth rate of mobile broadband traffic over the coming years (demand), there is a need for more wireless network capacity (supply). One of the major approaches to expand mobile wireless capacity is to add more spectrum to the market by enabling “spectrum sharing”. The FCC has issued many reports indicating that the US is dangerously close to running out of capacity for mobile data, which is why the FCC and the NTIA have been working continually to enable spectrum sharing.\ud \ud Spectrum sharing has moved from being a radical notion to a principal policy focus in the past decade. Enabling spectrum sharing regimes means that sharing agreements must be implemented. To have meaning, those agreements must be enforceable. The focus of this paper is to determine the relationship between enforcement methodologies and benefits of spectrum sharing through sharing between government and commercial users. Sharing between the government incumbents (i.e. Federal or non-Federal agencies) and commercial wireless broadband operators/users is one of the key forms of spectrum sharing that is recommended by the NTIA, the FCC, and the PCAST report. To address this problem, we build a model to quantitatively examine the relationships between different enforcement scenarios and sharing benefits. We model two case studies, 1695-1710 MHz band and 3550-3650 MHz band

    Coordinated Dynamic Spectrum Management of LTE-U and Wi-Fi Networks

    Full text link
    This paper investigates the co-existence of Wi-Fi and LTE in emerging unlicensed frequency bands which are intended to accommodate multiple radio access technologies. Wi-Fi and LTE are the two most prominent access technologies being deployed today, motivating further study of the inter-system interference arising in such shared spectrum scenarios as well as possible techniques for enabling improved co-existence. An analytical model for evaluating the baseline performance of co-existing Wi-Fi and LTE is developed and used to obtain baseline performance measures. The results show that both Wi-Fi and LTE networks cause significant interference to each other and that the degradation is dependent on a number of factors such as power levels and physical topology. The model-based results are partially validated via experimental evaluations using USRP based SDR platforms on the ORBIT testbed. Further, inter-network coordination with logically centralized radio resource management across Wi-Fi and LTE systems is proposed as a possible solution for improved co-existence. Numerical results are presented showing significant gains in both Wi-Fi and LTE performance with the proposed inter-network coordination approach.Comment: Accepted paper at IEEE DySPAN 201

    Can Unlicensed Bands Be Used by Unlicensed Usage?

    Get PDF
    Since their introduction, unlicensed ISM bands have resulted in a wide range of new wireless devices and services. It is fair to say that the success of ISM was an important factor in the opening of the TV white space for unlicensed access. Further bands (e.g., 3550-3650 MHz) are being studied to support unlicensed access. Expansion of the unlicensed bands may well address one of the principle disadvantages of unlicensed (variable quality of service) which could result in a vibrant new group companies providing innovative services and better prices. However, given that many commercial mobile telephone operators are relying heavily on the unlicensed bands to manage growth in data traffic through the “offloading” strategy, the promise of these bands may be more limited than might otherwise be expected (Musey, 2013).\ud \ud Wireless data traffic has exploded in the past several years due to more capable devices and faster network technologies. While there is some debate on the trajectory of data growth, some notable reports include AT&T, which reported data growth of over 5000% from 2008 to 2010 and Cisco, who predicted that mobile data traffic will grow to 6.3 exabytes per month in average by 2015 (Hu, 2012). Although the data traffic increased dramatically, relatively little new spectrum for mobile operators has come online in the last several years; further, the “flat-rate” pricing strategy has led to declining Average Revenue Per User (ARPU) for the mobile operators. Their challenge, then, is how to satisfy the service demand with acceptable additional expenditures on infrastructure and spectrum utilization.\ud \ud A common response to this challenge has been to offload data traffic onto unlicensed (usually WiFi) networks. This can be accomplished either by establishing infrastructure (WiFi hotspots) or to use existing private networks. This phenomenon leads to two potential risks for spectrum entrants: (1) the use of offloading may overwhelm unlicensed spectrum and leave little access opportunities for newcomers; (2) the intensity of the traffic may increase interference and degrade innovative services.\ud \ud Consequently, opening more unlicensed frequency bands alone may not necessarily lead to more unlicensed usage. In this paper, we will estimate spectrum that left for unlicensed usage and analyze risks for unlicensed users in unlicensed bands in terms of access opportunities and monetary gain. We will further provide recommendations that help foster unlicensed usage in unlicensed bands

    Fair coexistence of scheduled and random access wireless networks: unlicensed LTE/WiFi

    Get PDF
    We study the fair coexistence of scheduled and random access transmitters sharing the same frequency channel. Interest in coexistence is topical due to the need for emerging unlicensed LTE technologies to coexist fairly withWiFi. However, this interest is not confined to LTE/WiFi as coexistence is likely to become increasingly commonplace in IoT networks and beyond 5G. In this paper, we show that mixing scheduled and random access incurs an inherent throughput/delay cost and the cost of heterogeneity. We derive the joint proportional fair rate allocation, which casts useful light on current LTE/WiFi discussions. We present experimental results on inter-technology detection and consider the impact of imperfect carrier sensing.This work was supported in part by the Science Foundation Ireland under Grant 11/PI/1177 and Grant 13/RC/207, in part by the European Commission in the framework of the H2020-ICT-2014-2 Project Flex5Gware under Grant 671563, and in part by the Spanish Ministry of Economy and the FEDER regional development fund through SINERGIA Project under Grant TEC2015-71303-R

    Cognition-inspired 5G cellular networks: a review and the road ahead

    Get PDF
    Despite the evolution of cellular networks, spectrum scarcity and the lack of intelligent and autonomous capabilities remain a cause for concern. These problems have resulted in low network capacity, high signaling overhead, inefficient data forwarding, and low scalability, which are expected to persist as the stumbling blocks to deploy, support and scale next-generation applications, including smart city and virtual reality. Fifth-generation (5G) cellular networking, along with its salient operational characteristics - including the cognitive and cooperative capabilities, network virtualization, and traffic offload - can address these limitations to cater to future scenarios characterized by highly heterogeneous, ultra-dense, and highly variable environments. Cognitive radio (CR) and cognition cycle (CC) are key enabling technologies for 5G. CR enables nodes to explore and use underutilized licensed channels; while CC has been embedded in CR nodes to learn new knowledge and adapt to network dynamics. CR and CC have brought advantages to a cognition-inspired 5G cellular network, including addressing the spectrum scarcity problem, promoting interoperation among heterogeneous entities, and providing intelligence and autonomous capabilities to support 5G core operations, such as smart beamforming. In this paper, we present the attributes of 5G and existing state of the art focusing on how CR and CC have been adopted in 5G to provide spectral efficiency, energy efficiency, improved quality of service and experience, and cost efficiency. This main contribution of this paper is to complement recent work by focusing on the networking aspect of CR and CC applied to 5G due to the urgent need to investigate, as well as to further enhance, CR and CC as core mechanisms to support 5G. This paper is aspired to establish a foundation and to spark new research interest in this topic. Open research opportunities and platform implementation are also presented to stimulate new research initiatives in this exciting area
    • …
    corecore