1,753 research outputs found

    Statistical Learning Theory for Location Fingerprinting in Wireless LANs

    Get PDF
    In this paper, techniques and algorithms developed in the framework of statistical learning theory are analyzed and applied to the problem of determining the location of a wireless device by measuring the signal strengths from a set of access points (location fingerprinting). Statistical Learning Theory provides a rich theoretical basis for the development of models starting from a set of examples. Signal strength measurement is part of the normal operating mode of wireless equipment, in particular Wi-Fi, so that no custom hardware is required. The proposed techniques, based on the Support Vector Machine paradigm, have been implemented and compared, on the same data set, with other approaches considered in the literature. Tests performed in a real-world environment show that results are comparable, with the advantage of a low algorithmic complexity in the normal operating phase. Moreover, the algorithm is particularly suitable for classification, where it outperforms the other techniques

    Collaborative Wi-Fi fingerprint training for indoor positioning

    Get PDF
    As the scope of location-based applications and services further reach into our everyday lives, the demand for more robust and reliable positioning becomes ever more important. However indoor positioning has never been a fully resolved issue due to its complexity and necessity to adapt to different situations and environment. Inertial sensor and Wi-Fi signal integrated indoor positioning have become good solutions to overcome many of the problems. Yet there are still problems such as inertial heading drift, wireless signal fluctuation and the time required for training a Wi-Fi fingerprint database. The collaborative Wi-Fi fingerprint training (cWiDB) method proposed in this paper enables the system to perform inertial measurement based collaborative positioning or Wi-Fi fingerprinting alternatively according to the current situation. It also reduces the time required for training the fingerprint database. Different database training methods and different training data size are compared to demonstrate the time and data required for generating a reasonable database. Finally the fingerprint positioning result is compared which indicates that the cWiDB is able to achieve the same positioning accuracy as conventional training methods but with less training time and a data adjustment option enabled

    WIFI BASED INDOOR POSITIONING - A MACHINE LEARNING APPROACH

    Get PDF
    Navigation has become much easier these days mainly due to advancement in satellite technology. The current navigation systems provide better positioning accuracy but are limited to outdoors. When it comes to the indoor spaces such as airports, shopping malls, hospitals or office buildings, to name a few, it will be challenging to get good positioning accuracy with satellite signals due to thick walls and roofs as obstacles. This gap led to a whole new area of research in the field of indoor positioning. Many researches have been conducting experiments on different technologies and successful outcomes have beenseen. Each technology providing indoor positioning capability has its own limitations. In this thesis, different radio frequency (RF) and non-radio frequency (Non-RF) technologies are discussed but focus is set on Wi-Fi for indoor positioning. A demo indoor positioning app is developed for the Technobothnia building at the University of Vaasa premises. This building is already equipped with Wi-Fi infrastructure. A floor plan of the building, radio maps and a fingerprinting database with Wi-Fi signal strength measurements is created with help of tools from HERE technology. The app provides real-time positioning and routing as a future visitor tool. With the exceeding amounts of available data, one of the highly popular fields is applying Machine Learning (ML) to data. It can be applied in many disciplines from medicine to space. In ML, algorithms learn from the data and make predictions. Due to the significant growth in various sensor technologies and computational power, large amounts of data can be stored and processed. Here, the ML approach is also taken to the indoor positioning challenge. An open-source Wi-Fi fingerprinting dataset is obtained from Tampere University and ML algorithms are applied on it for performing indoor positioning. Algorithms are trained with received signal strength (RSS) values with their respective reference coordinates and the user location can be predicted. The thesis provides a performance analysis of different algorithms suitable for future mobile implementations

    Indoor positioning with deep learning for mobile IoT systems

    Get PDF
    2022 Summer.Includes bibliographical references.The development of human-centric services with mobile devices in the era of the Internet of Things (IoT) has opened the possibility of merging indoor positioning technologies with various mobile applications to deliver stable and responsive indoor navigation and localization functionalities that can enhance user experience within increasingly complex indoor environments. But as GPS signals cannot easily penetrate modern building structures, it is challenging to build reliable indoor positioning systems (IPS). Currently, Wi-Fi sensing based indoor localization techniques are gaining in popularity as a means to build accurate IPS, benefiting from the prevalence of 802.11 family. Wi-Fi fingerprinting based indoor localization has shown remarkable performance over geometric mapping in complex indoor environments by taking advantage of pattern matching techniques. Today, the two main information extracted from Wi-Fi signals to form fingerprints are Received Signal Strength Index (RSSI) and Channel State Information (CSI) with Orthogonal Frequency-Division Multiplexing (OFDM) modulation, where the former can provide the average localization error around or under 10 meters but has low hardware and software requirements, while the latter has a higher chance to estimate locations with ultra-low distance errors but demands more resources from chipsets, firmware/software environments, etc. This thesis makes two novel contributions towards realizing viable IPS on mobile devices using RSSI and CSI information, and deep machine learning based fingerprinting. Due to the larger quantity of data and more sophisticated signal patterns to create fingerprints in complex indoor environments, conventional machine learning algorithms that need carefully engineered features suffer from the challenges of identifying features from very high dimensional data. Hence, the abilities of approximation functions generated from conventional machine learning models to estimate locations are limited. Deep machine learning based approaches can overcome these challenges to realize scalable feature pattern matching approaches such as fingerprinting. However, deep machine learning models generally require considerable memory footprint, and this creates a significant issue on resource-constrained devices such as mobile IoT devices, wearables, smartphones, etc. Developing efficient deep learning models is a critical factor to lower energy consumption for resource intensive mobile IoT devices and accelerate inference time. To address this issue, our first contribution proposes the CHISEL framework, which is a Wi-Fi RSSI- based IPS that incorporates data augmentation and compression-aware two-dimensional convolutional neural networks (2D CAECNNs) with different pruning and quantization options. The proposed model compression techniques help reduce model deployment overheads in the IPS. Unlike RSSI, CSI takes advantages of multipath signals to potentially help indoor localization algorithms achieve a higher level of localization accuracy. The compensations for magnitude attenuation and phase shifting during wireless propagation generate different patterns that can be utilized to define the uniqueness of different locations of signal reception. However, all prior work in this domain constrains the experimental space to relatively small-sized and rectangular rooms where the complexity of building interiors and dynamic noise from human activities, etc., are seldom considered. As part of our second contribution, we propose an end-to-end deep learning based framework called CSILoc for Wi-Fi CSI-based IPS on mobile IoT devices. The framework includes CSI data collection, clustering, denoising, calibration and classification, and is the first study to verify the feasibility to use CSI for floor level indoor localization with minimal knowledge of Wi-Fi access points (APs), thus avoiding security concerns during the offline data collection process

    RSS-based wireless LAN indoor localization and tracking using deep architectures

    Get PDF
    Wireless Local Area Network (WLAN) positioning is a challenging task indoors due to environmental constraints and the unpredictable behavior of signal propagation, even at a fixed location. The aim of this work is to develop deep learning-based approaches for indoor localization and tracking by utilizing Received Signal Strength (RSS). The study proposes Multi-Layer Perceptron (MLP), One and Two Dimensional Convolutional Neural Networks (1D CNN and 2D CNN), and Long Short Term Memory (LSTM) deep networks architectures for WLAN indoor positioning based on the data obtained by actual RSS measurements from an existing WLAN infrastructure in a mobile user scenario. The results, using different types of deep architectures including MLP, CNNs, and LSTMs with existing WLAN algorithms, are presented. The Root Mean Square Error (RMSE) is used as the assessment criterion. The proposed LSTM Model 2 achieved a dynamic positioning RMSE error of 1.73 m, which outperforms probabilistic WLAN algorithms such as Memoryless Positioning (RMSE: 10.35 m) and Nonparametric Information (NI) filter with variable acceleration (RMSE: 5.2 m) under the same experiment environment.ECSEL Joint Undertaking ; European Union's H2020 Framework Programme (H2020/2014-2020) Grant ; National Authority TUBITA

    SENSOR FUSION AND TEMPORAL INTEGRATION FOR TOUCH INTERFACE INDOOR POSITIONING

    Get PDF
    Dalam kunjungan wisata atau budaya, panduan terhadap objek menarik sangat berguna untuk menambah pengetahuan dan pengalaman pengunjung di lokasi tersebut. Dewasa ini, dengan bantuan teknologi modern, aplikasi bergerak mampu menjadi pemandu wisata mandiri otomatis dengan sistem sadar konteks. Kebanyakan, unsur konteks yang digunakan dalam aplikasi-aplikasi ini adalah posisi dua dimensi (2D). Meskipun begitu, ada beberapa kemungkinan lain agar tiap unsur konteks dari perangkat pintar ini dapat diteliti lebih lanjut. Berkat sensor dari ponsel pintar, konteks-konteks tersebut, yang terdiri dari konteks dalam 3 dimensi (3D) dari posisi dan orientasi (dalam sumbu X, Y, dan Z), dapat ditangkap oleh ponsel pintar. Dimensi-dimensi ini akan diteliti untuk mendapatkan kemungkinan keberhasilan digunakannya ponsel pintar yang digenggam sebagai pointer terhadap objek menarik. Hal ini dilakukan karena posisi 2D tidak bisa menangani konteks ketinggian. Sehingga, pengalaman pengguna dapat ditingkatkan karena mereka tidak terhalang secara visual dan audio. Tetapi, sensor-sensor ini memiliki galat pengukuran yang tinggi. Sehingga, suatu penggabungan sensor diterapkan untuk menangani galat tersebut. Penelitian ini menerapkan metode untuk memperkirakan orientasi sudut dan posisi dengan berbagai filter, yakni Complementary Filter dan Kalman Filter. Complementary Filter melibatkan gyroscope, magnetometer, dan accelerometer dari sensor inersial ponsel pintar. Sedangkan, Kalman Filter melibatkan accelerometer dan hasil Wi-Fi fingerprinting yang didapatkan dari pengamatan lingkungan. Evaluasi perkiraan-perkiraan hasil penggabungan observasi sensor oleh filter-filter tersebut menggunakan ilustrasi grafis dan evaluasi statistika untuk mengukur kualitas reduksi galat dari tiap filter. Hasil dari performa filter menunjukkan bahwa kualitas perkiraan orientasi oleh Complementary Filter cukup baik untuk menghasilkan sudut yang sesuai. Namun, perkiraan posisi oleh Kalman Filter menunjukkan hasil yang kurang baik akibat integrasi ganda terhadap derau dan pengaruh besar Wi-Fi fingerprinting. Hasil Wi-Fi fingerprinting menunjukkan perkiraan posisi yang tidak akurat. Hal ini menunjukkan bahwa perkiraan posisi tidak dapat digunakan dalam penelitian ini. Sedangkan, dalam percobaan menunjuk objek di laboratorium, perkiraan orientasi sudut memberikan hasl yang cukup baik dengan ponsel pintar. Secara ringkas, perkiraan posisi dan orientasi 3D dengan Complementary Filter dan Kalman Filter dalam ponsel untuk pointer tidak dapat digunakan menurut penelitian ini. Meskipun begitu, masih perlu diteliti mengenai penerapan filter lainnya untuk perkiraan posisi dan observasi lain untuk membantu perkiraan yang baik. Walaupun penggunaan filter dan observasi lain dapat mengorbankan sumber daya dari ponsel pintar. ======================================================================================================== During cultural or tourism visits, a guide of the interesting objects is useful to enhance the knowledge and the experience of the visitors. Nowadays, because of the modern technologies, mobile applications are capable to be a personal autonomous guide in the case of context-aware system. Mostly, the context element used in these applications is the position in two dimension (2D). However, there are more possibilities using the context elements from smartphone that can be explored. Thanks to smartphone sensors, the contexts which can be captured by smartphone are composed in 3 dimensions (3D) of both position and orientation (in X, Y, and Z axes). Those dimensions are used to explore the feasibility of smartphone which can held by hand as pointer to interesting objects, which can’t be handled by 2D position only. Thus, the user experience can be enhanced, as they don’t get vision-blocked or audio-blocked. However, those sensors have erroneous measurements. Hence, a sensor fusion is applied to overcome this drawback. The sensor fusion can be implemented not only using the internal smartphone sensors, but also the external environment. In this case of indoor environment, the Wi-Fi fingerprinting approach, which widely used as indoor positioning algorithm, can be considered as external observation. Even though so, the quality of the fusion should be studied to assure that it is feasible to use smartphone a pointing device in indoor environment. This study proposed a method to estimate orientation and position using different filters, namely Complementary Filter and Kalman Filter respectively. The complementary filter involves the gyroscope, magnetometer, and accelerometer from the smartphone inertial navigation sensors, while the Kalman Filter involves accelerometer and the Wi-Fi fingerprinting result which come from environmental measurement. To evaluate these estimations, the graphical representation and statistical evaluation are used to measure the filters’ quality in reducing the errors. The results of the filters’ performance showed that orientation estimation was adequate to give acceptable angle. But, unfortunately, position estimation had resulted in poor performance because of the double integration toward noise and the heavy influence from Wi-Fi fingerprinting. The Wi-Fi fingerprinting resulted inaccurate positioning. This concluded that the position estimation cannot be used at all in this study. In laboratory object pointing field experiment, the orientation estimation gave passable estimation to locate an object by a fixed smartphone position. To sum up, the 3D position and orientation estimation using Complementary Filter and Kalman Filter might not be feasible according to this study. However, regarding to 3D position estimation, possibly there are other methods than Kalman Filter which might be used as state estimator. And also, there are various external measurements which might help to achieve better estimation. Although, the drawbacks between the more sophisticated methods and the computation power and capability of smartphone should be considered for a good user experience

    Recent Advances in Indoor Localization Systems and Technologies

    Get PDF
    Despite the enormous technical progress seen in the past few years, the maturity of indoor localization technologies has not yet reached the level of GNSS solutions. The 23 selected papers in this book present the recent advances and new developments in indoor localization systems and technologies, propose novel or improved methods with increased performance, provide insight into various aspects of quality control, and also introduce some unorthodox positioning methods
    • …
    corecore