2,796 research outputs found

    Indoor collaborative positioning based on a multi-sensor and multi-user system

    Get PDF
    With recent developments in the Global Satellite Navigation Systems (GNSS), the applications and services of positioning and navigation have developed rapidly worldwide. Location-based services (LBS) have become a big application which provide position related services to the mass market. As LBS applications become more popular, positioning services and capacity are demanded to cover all types of environment with improved accuracy and reliability. While GNSS can provide promising positioning and navigation solutions in open outdoor environments, it does not work well when inside buildings, in tunnels or under canopy. Positioning in such difficult environments have been known as the indoor positioning problem. Although the problem has been looked into for more than a decade, there currently no solution that can compare to the performance of GNSS in outdoor environments. This thesis introduces a collaborative indoor positioning solution based on particle filtering which integrates multiple sensors, e.g. inertial sensors, Wi-Fi signals, map information etc., and multiple local users which provide peer-to-peer (P2P) relative ranging measurements. This solution addresses three current problems of indoor positioning. First of all is the positioning accuracy, which is limited by the availability of sensors and the quality of their signals in the environment. The collaborative positioning solution integrates a number of sensors and users to provide better measurements and restrict measurement error from growing. Secondly, the reliability of the positioning solutions, which is also affected by the signal quality. The unpredictable behaviour of positioning signals and data could lead to many uncertainties in the final positioning result. A successful positioning system should be able to deal with changes in the signal and provide reliable positioning results using different data processing strategies. Thirdly, the continuity and robustness of positioning solutions. While the indoor environment can be very different from one another, hence applicable signals are also different, the positioning solution should take into account the uniqueness of different situations and provide continuous positioning result regardless of the changing datWith recent developments in the Global Satellite Navigation Systems (GNSS), the applications and services of positioning and navigation have developed rapidly worldwide. Location based services (LBS) have become a big application which provide position related services to the mass market. As LBS applications become more popular, positioning services and capacity are demanded to cover all types of environment with improved accuracy and reliability. While GNSS can provide promising positioning and navigation solutions in open outdoor environments, it does not work well when inside buildings, in tunnels or under canopy. Positioning in such difficult environments have been known as the indoor positioning problem. Although the problem has been looked into for more than a decade, there currently no solution that can compare to the performance of GNSS in outdoor environments. This thesis introduces a collaborative indoor positioning solution based on particle filtering which integrates multiple sensors, e.g. inertial sensors, Wi-Fi signals, map information etc., and multiple local users which provide peer-to-peer (P2P) relative ranging measurements. This solution addresses three current problems of indoor positioning. First of all is the positioning accuracy, which is limited by the availability of sensors and the quality of their signals in the environment. The collaborative positioning solution integrates a number of sensors and users to provide better measurements and restrict measurement error from growing. Secondly, the reliability of the positioning solutions, which is also affected by the signal quality. The unpredictable behaviour of positioning signals and data could lead to many uncertainties in the final positioning result. A successful positioning system should be able to deal with changes in the signal and provide reliable positioning results using different data processing strategies. Thirdly, the continuity and robustness of positioning solutions. While the indoor environment can be very different from one another, hence applicable signals are also different, the positioning solution should take into account the uniqueness of different situations and provide continuous positioning result regardless of the changing data. The collaborative positioning aspect is examined from three aspects, the network geometry, the network size and the P2P ranging measurement accuracy. Both theoretical and experimental results indicate that a collaborative network with a low dilution of precision (DOP) value could achieve better positioning accuracy. While increasing sensors and users will reduce DOP, it will also increase computation load which is already a disadvantage of particle filters. The most effective collaborative positioning network size is thus identified and applied. While the positioning system measurement error is constrained by the accuracy of the P2P ranging constraint, the work in this thesis shows that even low accuracy measurements can provide effective constraint as long as the system is able to identify the different qualities of the measurements. The proposed collaborative positioning algorithm constrains both inertial measurements and Wi-Fi fingerprinting to enhance the stability and accuracy of positioning result, achieving metre-level accuracy. The application of collaborative constraints also eliminate the requirement for indoor map matching which had been a very useful tool in particle filters for indoor positioning purposes. The wall constraint can be replaced flexibly and easily with relative constraint. Simulations and indoor trials are carried out to evaluate the algorithms. Results indicate that metre-level positioning accuracy could be achieved and collaborative positioning also gives the system more flexibility to adapt to different situations when Wi-Fi or collaborative ranging is unavailable. The collaborative positioning aspect is examined from three aspects, the network geometry, the network size and the P2P ranging measurement accuracy. Both theoretical and experimental results indicate that a collaborative network with a low dilution of precision (DOP) value could achieve better positioning accuracy. While increasing sensors and users will reduce DOP, it will also increase computation load which is already a disadvantage of particle filters. The most effective collaborative positioning network size is thus identified and applied. While the positioning system measurement error is constrained by the accuracy of the P2P ranging constraint, the work in this thesis shows that even low accuracy measurements can provide effective constraint as long as the system is able to identify the different qualities of the measurements. The proposed collaborative positioning algorithm constrains both inertial measurements and Wi-Fi fingerprinting to enhance the stability and accuracy of positioning result, achieving metre-level accuracy. The application of collaborative constraints also eliminate the requirement for indoor map matching which had been a very useful tool in particle filters for indoor positioning purposes. The wall constraint can be replaced flexibly and easily with relative constraint. Simulations and indoor trials are carried out to evaluate the algorithms. Results indicate that metre-level positioning accuracy could be achieved and collaborative positioning also gives the system more flexibility to adapt to different situations when Wi-Fi or collaborative ranging is unavailable

    Indoor collaborative positioning based on a multi-sensor and multi-user system

    Get PDF
    With recent developments in the Global Satellite Navigation Systems (GNSS), the applications and services of positioning and navigation have developed rapidly worldwide. Location-based services (LBS) have become a big application which provide position related services to the mass market. As LBS applications become more popular, positioning services and capacity are demanded to cover all types of environment with improved accuracy and reliability. While GNSS can provide promising positioning and navigation solutions in open outdoor environments, it does not work well when inside buildings, in tunnels or under canopy. Positioning in such difficult environments have been known as the indoor positioning problem. Although the problem has been looked into for more than a decade, there currently no solution that can compare to the performance of GNSS in outdoor environments. This thesis introduces a collaborative indoor positioning solution based on particle filtering which integrates multiple sensors, e.g. inertial sensors, Wi-Fi signals, map information etc., and multiple local users which provide peer-to-peer (P2P) relative ranging measurements. This solution addresses three current problems of indoor positioning. First of all is the positioning accuracy, which is limited by the availability of sensors and the quality of their signals in the environment. The collaborative positioning solution integrates a number of sensors and users to provide better measurements and restrict measurement error from growing. Secondly, the reliability of the positioning solutions, which is also affected by the signal quality. The unpredictable behaviour of positioning signals and data could lead to many uncertainties in the final positioning result. A successful positioning system should be able to deal with changes in the signal and provide reliable positioning results using different data processing strategies. Thirdly, the continuity and robustness of positioning solutions. While the indoor environment can be very different from one another, hence applicable signals are also different, the positioning solution should take into account the uniqueness of different situations and provide continuous positioning result regardless of the changing datWith recent developments in the Global Satellite Navigation Systems (GNSS), the applications and services of positioning and navigation have developed rapidly worldwide. Location based services (LBS) have become a big application which provide position related services to the mass market. As LBS applications become more popular, positioning services and capacity are demanded to cover all types of environment with improved accuracy and reliability. While GNSS can provide promising positioning and navigation solutions in open outdoor environments, it does not work well when inside buildings, in tunnels or under canopy. Positioning in such difficult environments have been known as the indoor positioning problem. Although the problem has been looked into for more than a decade, there currently no solution that can compare to the performance of GNSS in outdoor environments. This thesis introduces a collaborative indoor positioning solution based on particle filtering which integrates multiple sensors, e.g. inertial sensors, Wi-Fi signals, map information etc., and multiple local users which provide peer-to-peer (P2P) relative ranging measurements. This solution addresses three current problems of indoor positioning. First of all is the positioning accuracy, which is limited by the availability of sensors and the quality of their signals in the environment. The collaborative positioning solution integrates a number of sensors and users to provide better measurements and restrict measurement error from growing. Secondly, the reliability of the positioning solutions, which is also affected by the signal quality. The unpredictable behaviour of positioning signals and data could lead to many uncertainties in the final positioning result. A successful positioning system should be able to deal with changes in the signal and provide reliable positioning results using different data processing strategies. Thirdly, the continuity and robustness of positioning solutions. While the indoor environment can be very different from one another, hence applicable signals are also different, the positioning solution should take into account the uniqueness of different situations and provide continuous positioning result regardless of the changing data. The collaborative positioning aspect is examined from three aspects, the network geometry, the network size and the P2P ranging measurement accuracy. Both theoretical and experimental results indicate that a collaborative network with a low dilution of precision (DOP) value could achieve better positioning accuracy. While increasing sensors and users will reduce DOP, it will also increase computation load which is already a disadvantage of particle filters. The most effective collaborative positioning network size is thus identified and applied. While the positioning system measurement error is constrained by the accuracy of the P2P ranging constraint, the work in this thesis shows that even low accuracy measurements can provide effective constraint as long as the system is able to identify the different qualities of the measurements. The proposed collaborative positioning algorithm constrains both inertial measurements and Wi-Fi fingerprinting to enhance the stability and accuracy of positioning result, achieving metre-level accuracy. The application of collaborative constraints also eliminate the requirement for indoor map matching which had been a very useful tool in particle filters for indoor positioning purposes. The wall constraint can be replaced flexibly and easily with relative constraint. Simulations and indoor trials are carried out to evaluate the algorithms. Results indicate that metre-level positioning accuracy could be achieved and collaborative positioning also gives the system more flexibility to adapt to different situations when Wi-Fi or collaborative ranging is unavailable. The collaborative positioning aspect is examined from three aspects, the network geometry, the network size and the P2P ranging measurement accuracy. Both theoretical and experimental results indicate that a collaborative network with a low dilution of precision (DOP) value could achieve better positioning accuracy. While increasing sensors and users will reduce DOP, it will also increase computation load which is already a disadvantage of particle filters. The most effective collaborative positioning network size is thus identified and applied. While the positioning system measurement error is constrained by the accuracy of the P2P ranging constraint, the work in this thesis shows that even low accuracy measurements can provide effective constraint as long as the system is able to identify the different qualities of the measurements. The proposed collaborative positioning algorithm constrains both inertial measurements and Wi-Fi fingerprinting to enhance the stability and accuracy of positioning result, achieving metre-level accuracy. The application of collaborative constraints also eliminate the requirement for indoor map matching which had been a very useful tool in particle filters for indoor positioning purposes. The wall constraint can be replaced flexibly and easily with relative constraint. Simulations and indoor trials are carried out to evaluate the algorithms. Results indicate that metre-level positioning accuracy could be achieved and collaborative positioning also gives the system more flexibility to adapt to different situations when Wi-Fi or collaborative ranging is unavailable

    Toward a unified PNT, Part 1: Complexity and context: Key challenges of multisensor positioning

    Get PDF
    The next generation of navigation and positioning systems must provide greater accuracy and reliability in a range of challenging environments to meet the needs of a variety of mission-critical applications. No single navigation technology is robust enough to meet these requirements on its own, so a multisensor solution is required. Known environmental features, such as signs, buildings, terrain height variation, and magnetic anomalies, may or may not be available for positioning. The system could be stationary, carried by a pedestrian, or on any type of land, sea, or air vehicle. Furthermore, for many applications, the environment and host behavior are subject to change. A multi-sensor solution is thus required. The expert knowledge problem is compounded by the fact that different modules in an integrated navigation system are often supplied by different organizations, who may be reluctant to share necessary design information if this is considered to be intellectual property that must be protected

    Evaluating indoor positioning systems in a shopping mall : the lessons learned from the IPIN 2018 competition

    Get PDF
    The Indoor Positioning and Indoor Navigation (IPIN) conference holds an annual competition in which indoor localization systems from different research groups worldwide are evaluated empirically. The objective of this competition is to establish a systematic evaluation methodology with rigorous metrics both for real-time (on-site) and post-processing (off-site) situations, in a realistic environment unfamiliar to the prototype developers. For the IPIN 2018 conference, this competition was held on September 22nd, 2018, in Atlantis, a large shopping mall in Nantes (France). Four competition tracks (two on-site and two off-site) were designed. They consisted of several 1 km routes traversing several floors of the mall. Along these paths, 180 points were topographically surveyed with a 10 cm accuracy, to serve as ground truth landmarks, combining theodolite measurements, differential global navigation satellite system (GNSS) and 3D scanner systems. 34 teams effectively competed. The accuracy score corresponds to the third quartile (75th percentile) of an error metric that combines the horizontal positioning error and the floor detection. The best results for the on-site tracks showed an accuracy score of 11.70 m (Track 1) and 5.50 m (Track 2), while the best results for the off-site tracks showed an accuracy score of 0.90 m (Track 3) and 1.30 m (Track 4). These results showed that it is possible to obtain high accuracy indoor positioning solutions in large, realistic environments using wearable light-weight sensors without deploying any beacon. This paper describes the organization work of the tracks, analyzes the methodology used to quantify the results, reviews the lessons learned from the competition and discusses its future

    Sub-Nanosecond Time of Flight on Commercial Wi-Fi Cards

    Full text link
    Time-of-flight, i.e., the time incurred by a signal to travel from transmitter to receiver, is perhaps the most intuitive way to measure distances using wireless signals. It is used in major positioning systems such as GPS, RADAR, and SONAR. However, attempts at using time-of-flight for indoor localization have failed to deliver acceptable accuracy due to fundamental limitations in measuring time on Wi-Fi and other RF consumer technologies. While the research community has developed alternatives for RF-based indoor localization that do not require time-of-flight, those approaches have their own limitations that hamper their use in practice. In particular, many existing approaches need receivers with large antenna arrays while commercial Wi-Fi nodes have two or three antennas. Other systems require fingerprinting the environment to create signal maps. More fundamentally, none of these methods support indoor positioning between a pair of Wi-Fi devices without~third~party~support. In this paper, we present a set of algorithms that measure the time-of-flight to sub-nanosecond accuracy on commercial Wi-Fi cards. We implement these algorithms and demonstrate a system that achieves accurate device-to-device localization, i.e. enables a pair of Wi-Fi devices to locate each other without any support from the infrastructure, not even the location of the access points.Comment: 14 page

    Context Detection, Categorization and Connectivity for Advanced Adaptive Integrated Navigation

    Get PDF
    Context is the environment that a navigation system operates in and the behaviour of its host vehicle or user. The type and quality of signals and environmental features available for positioning varies with the environment. For example, GNSS provides high-quality positioning in open environments, low-quality positioning in dense urban environments and no solution at all deep indoors. The behaviour of the host vehicle (or pedestrian) is also important. For example, pedestrian, car and train navigation all require different map-matching techniques, different motion constraints to limit inertial navigation error growth, and different dynamic models in a navigation filter [1]. A navigation system design should therefore be matched to its context. However, the context can change, particularly for devices, such as smartphones, which move between indoor and outdoor environments and can be stationary, on a pedestrian, or in a vehicle. For best performance, a navigation system should therefore be able to detect its operating context and adapt accordingly; this is context-adaptive positioning [1]. Previous work on context-adaptive navigation and positioning has focused on individual subsystems. For example, there has been substantial research into determining the motion type and sensor location for pedestrian dead reckoning using step detection [2-4]. Researchers have also begun to investigate context-adaptive (or cognitive) GNSS [5-7]. However, this paper considers context adaptation across an integrated navigation system as a whole. The paper addresses three aspects of context-adaptive integrated navigation: context detection, context categorization and context connectivity. It presents experimental results showing how GNSS C/N0 measurements, frequency-domain MEMS inertial sensor measurements and Wi-Fi signal availability could be used to detect both the environmental and behavioural contexts. It then looks at how context information could be shared across the different components of an integrated navigation system. Finally, the concept of context connectivity is introduced to improve the reliability of context detection. GNSS C/N0 measurement distributions, obtained using a smartphone, and Wi-Fi reception data collected over a range of indoor, urban and open environments will be compared to identify suitable features from which the environmental context may be derived. In an open environment, strong GNSS signals will be received from all directions. In an urban environment, fewer strong signals will be received and only from certain directions. Inside a building, nearly all GNSS signals will be much weaker than outside. Wi-Fi signals essentially vary with the environment in the opposite way to GNSS. Indoors, more access points (APs) can be received at higher signal strengths and there is greater variation in RSS. In urban environments, large numbers of APs can still be received, but at lower signal strengths [6]. Finally, in open environments, few APs, if any, will be received. Behavioural context is studied using an IMU. Although an Xsens MEMS IMU is used in this study, smartphone inertial sensors are also suitable. Pedestrian, car and train data has been collected under a range of different motion types and will be compared to identify context-dependent features. Early indications are that, as well as detecting motion, it is also possible to distinguish nominally-stationary IMUs that are placed in a car, on a person or on a table from the frequency spectra of the sensor measurements. The exchange of context information between subsystems in an integrated navigation system requires agreement on the definitions of those contexts. As different subsystems are often supplied by different organisations, it is desirable to standardize the context definitions across the whole navigation and positioning community. This paper therefore proposes a framework upon which a “context dictionary” could be constructed. Environmental and behavioural contexts are categorized separately and a hierarchy of attributes is proposed to enable some subsystems to work with highly specific context categories and others to work with broader categories. Finally, the concept of context connectivity is introduced. This is analogous to the road link connectivity used in map matching [8]. As context detection involves the matching of measurement data to stored context profiles, there will always be occurrences of false or ambiguous context identification. However, these may be minimized by using the fact that it is only practical to transition directly between certain pairs of contexts. For example, it is not normally possible to move directly from an airborne to an indoor environment as an aircraft must land first. Thus, the air and land contexts are connected, as are the land and indoor contexts, but the air and indoor contexts are not. Thus, by only permitting contexts that are connected to the previous context, false and ambiguous context detection is reduced. Robustness may be further enhanced by considering location-dependent connectivity. For example, people normally board and leave trains at stations and fixed-wing aircraft typically require an airstrip to take off and land. / References [1] Groves, P. D., Principles of GNSS, inertial, and multi-sensor integrated navigation systems, Second Edition, Artech House, 2013. [2] Park, C. G., et al., “Adaptive Step Length Estimation with Awareness of Sensor Equipped Location for PNS,” Proc. ION GNSS 2007. [3] Frank, K., et al., “Reliable Real-Time Recognition of Motion Related Human Activities Using MEMS Inertial Sensors,” Proc. ION GNSS 2010. [4] Pei, L., et al., “Using Motion-Awareness for the 3D Indoor Personal Navigation on a Smartphone,” Proc. ION GNSS 2011. [5] Lin, T., C. O’Driscoll, and G. Lachapelle, “Development of a Context-Aware Vector-Based High-Sensitivity GNSS Software Receiver,” Proc. ION ITM 2011. [6] Shafiee, M., K., O’Keefe, and G. Lachapelle, “Context-aware Adaptive Extended Kalman Filtering Using Wi-Fi Signals for GPS Navigation,” Proc. ION GNSS 2011. [7] Shivaramaiah, N. C., and A. G. Dempster, “Cognitive GNSS Receiver Design: Concept and Challenges,” Proc. ION GNSS 2011. [8] Quddus, M. A., High Integrity Map Matching Algorithms for Advanced Transport Telematics Applications, PhD Thesis, Imperial College London, 2006

    Wi-Fi fingerprinting based on collaborative confidence level training

    Get PDF
    Wi-Fi fingerprinting has been a popular indoor positioning technique with the advantage that infrastructures are readily available in most urban areas. However wireless signals are prone to fluctuation and noise, introducing errors in the final positioning result. This paper proposes a new fingerprint training method where a number of users train collaboratively and a confidence factor is generated for each fingerprint. Fingerprinting is carried out where potential fingerprints are extracted based on the confidence factor. Positioning accuracy improves by 40% when the new fingerprinting method is implemented and maximum error is reduced by 35%
    • …
    corecore