35 research outputs found

    Hybridisation of GNSS with other wireless/sensors technologies onboard smartphones to offer seamless outdoors-indoors positioning for LBS applications

    Get PDF
    Location-based services (LBS) are becoming an important feature on today’s smartphones (SPs) and tablets. Likewise, SPs include many wireless/sensors technologies such as: global navigation satellite system (GNSS), cellular, wireless fidelity (WiFi), Bluetooth (BT) and inertial-sensors that increased the breadth and complexity of such services. One of the main demand of LBS users is always/seamless positioning service. However, no single onboard SPs technology can seamlessly provide location information from outdoors into indoors. In addition, the required location accuracy can be varied to support multiple LBS applications. This is mainly due to each of these onboard wireless/sensors technologies has its own capabilities and limitations. For example, when outdoors GNSS receivers on SPs can locate the user to within few meters and supply accurate time to within few nanoseconds (e.g. ± 6 nanoseconds). However, when SPs enter into indoors this capability would be lost. In another vain, the other onboard wireless/sensors technologies can show better SP positioning accuracy, but based on some pre-defined knowledge and pre-installed infrastructure. Therefore, to overcome such limitations, hybrid measurements of these wireless/sensors technologies into a positioning system can be a possible solution to offer seamless localisation service and to improve location accuracy. This thesis aims to investigate/design/implement solutions that shall offer seamless/accurate SPs positioning and at lower cost than the current solutions. This thesis proposes three novel SPs localisation schemes including WAPs synchronisation/localisation scheme, SILS and UNILS. The schemes are based on hybridising GNSS with WiFi, BT and inertial-sensors measurements using combined localisation techniques including time-of-arrival (TOA) and dead-reckoning (DR). The first scheme is to synchronise and to define location of WAPs via outdoors-SPs’ fixed location/time information to help indoors localisation. SILS is to help locate any SP seamlessly as it goes from outdoors to indoors using measurements of GNSS, synched/located WAPs and BT-connectivity signals between groups of cooperated SPs in the vicinity. UNILS is to integrate onboard inertial-sensors’ readings into the SILS to provide seamless SPs positioning even in deep indoors, i.e. when the signals of WAPs or BT-anchors are considered not able to be used. Results, obtained from the OPNET simulations for various SPs network size and indoors/outdoors combinations scenarios, show that the schemes can provide seamless and locate indoors-SPs under 1 meter in near-indoors, 2-meters can be achieved when locating SPs at indoors (using SILS), while accuracy of around 3-meters can be achieved when locating SPs at various deep indoors situations without any constraint (using UNILS). The end of this thesis identifies possible future work to implement the proposed schemes on SPs and to achieve more accurate indoors SPs’ location

    Recent Advances in Indoor Localization Systems and Technologies

    Get PDF
    Despite the enormous technical progress seen in the past few years, the maturity of indoor localization technologies has not yet reached the level of GNSS solutions. The 23 selected papers in this book present the recent advances and new developments in indoor localization systems and technologies, propose novel or improved methods with increased performance, provide insight into various aspects of quality control, and also introduce some unorthodox positioning methods

    Off-line evaluation of indoor positioning systems in different scenarios: the experiences from IPIN 2020 competition

    Get PDF
    Every year, for ten years now, the IPIN competition has aimed at evaluating real-world indoor localisation systems by testing them in a realistic environment, with realistic movement, using the EvAAL framework. The competition provided a unique overview of the state-of-the-art of systems, technologies, and methods for indoor positioning and navigation purposes. Through fair comparison of the performance achieved by each system, the competition was able to identify the most promising approaches and to pinpoint the most critical working conditions. In 2020, the competition included 5 diverse off-site off-site Tracks, each resembling real use cases and challenges for indoor positioning. The results in terms of participation and accuracy of the proposed systems have been encouraging. The best performing competitors obtained a third quartile of error of 1 m for the Smartphone Track and 0.5 m for the Foot-mounted IMU Track. While not running on physical systems, but only as algorithms, these results represent impressive achievements.Track 3 organizers were supported by the European Union’s Horizon 2020 Research and Innovation programme under the Marie Skłodowska Curie Grant 813278 (A-WEAR: A network for dynamic WEarable Applications with pRivacy constraints), MICROCEBUS (MICINN, ref. RTI2018-095168-B-C55, MCIU/AEI/FEDER UE), INSIGNIA (MICINN ref. PTQ2018-009981), and REPNIN+ (MICINN, ref. TEC2017-90808-REDT). We would like to thanks the UJI’s Library managers and employees for their support while collecting the required datasets for Track 3. Track 5 organizers were supported by JST-OPERA Program, Japan, under Grant JPMJOP1612. Track 7 organizers were supported by the Bavarian Ministry for Economic Affairs, Infrastructure, Transport and Technology through the Center for Analytics-Data-Applications (ADA-Center) within the framework of “BAYERN DIGITAL II. ” Team UMinho (Track 3) was supported by FCT—Fundação para a Ciência e Tecnologia within the R&D Units Project Scope under Grant UIDB/00319/2020, and the Ph.D. Fellowship under Grant PD/BD/137401/2018. Team YAI (Track 3) was supported by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST 109-2221-E-197-026. Team Indora (Track 3) was supported in part by the Slovak Grant Agency, Ministry of Education and Academy of Science, Slovakia, under Grant 1/0177/21, and in part by the Slovak Research and Development Agency under Contract APVV-15-0091. Team TJU (Track 3) was supported in part by the National Natural Science Foundation of China under Grant 61771338 and in part by the Tianjin Research Funding under Grant 18ZXRHSY00190. Team Next-Newbie Reckoners (Track 3) were supported by the Singapore Government through the Industry Alignment Fund—Industry Collaboration Projects Grant. This research was conducted at Singtel Cognitive and Artificial Intelligence Lab for Enterprises (SCALE@NTU), which is a collaboration between Singapore Telecommunications Limited (Singtel) and Nanyang Technological University (NTU). Team KawaguchiLab (Track 5) was supported by JSPS KAKENHI under Grant JP17H01762. Team WHU&AutoNavi (Track 6) was supported by the National Key Research and Development Program of China under Grant 2016YFB0502202. Team YAI (Tracks 6 and 7) was supported by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST 110-2634-F-155-001

    Off-Line Evaluation of Indoor Positioning Systems in Different Scenarios: The Experiences From IPIN 2020 Competition

    Get PDF
    Every year, for ten years now, the IPIN competition has aimed at evaluating real-world indoor localisation systems by testing them in a realistic environment, with realistic movement, using the EvAAL framework. The competition provided a unique overview of the state-of-the-art of systems, technologies, and methods for indoor positioning and navigation purposes. Through fair comparison of the performance achieved by each system, the competition was able to identify the most promising approaches and to pinpoint the most critical working conditions. In 2020, the competition included 5 diverse off-site off-site Tracks, each resembling real use cases and challenges for indoor positioning. The results in terms of participation and accuracy of the proposed systems have been encouraging. The best performing competitors obtained a third quartile of error of 1 m for the Smartphone Track and 0.5 m for the Foot-mounted IMU Track. While not running on physical systems, but only as algorithms, these results represent impressive achievements

    Architecture for multi-technology real-time location systems

    Get PDF
    [Abstract] Indoor localization is a problem that has generated much interest in recent years. Proximity marketing, eHealth, smart-parking and smart-cities, security and emergency units, logistics management, or industrial control systems are some pf the sectors that have demanded new Location Based Services (LBSs). These services are usually implemented using Wireless Sensor Networks (WSNs), capable of transmitting and receiving Radio Frequency (RF) signals in order to locate mobile devices attached to vehicles, people, or animals. While systems based on satellite systems such as GPS work correctly in outdoor scenarios, indoor localization is still a challenging field of study. On one hand, signal propagation problems are common, not only due to reflections and scattering due to the building structures, but also because of signal attenuation and fading caused mainly by people in movement. To overcome these issues, most of the approaches use several WSNs with a combination of multiple wireless technologies, such asWiFi, ZigBee or Bluetooth, some of them also available in mobile devices such as smartphones and tablets. On the other hand, data received from multiple devices must be filtered and combined by means of location algorithms and techniques in order to obtain precise and robust Real-Time Location Systems (RTLSs). Therefore, it is common to implement hybrid location systems with support for several technologies at the same time. Nevertheless, the development of such systems entails a huge complexity. Thus, one of most widely accepted alternatives is the implementation of software architectures for localization, which provide several benefits. First, accessing to different kinds of hardware devices entails fewer platform and technology restrictions. Second, some common tasks are easier to perform, such as sensor data gathering and storage. Finally, architectures provide utilities for adding and retrieving localization data, user management, or the possibility of using several mapping and coordinate systems. In this work, we present several solutions for implementing software architectures for localization. First, we propose a mono-technology architecture using only Received Signal Strength (RSS) signal levels for ranging, which evolves into a much more complete multitechnology architecture in a second stage. The proposed approaches implement several functionalities that resolve most of the hybrid RTLS system requirements, such as: • Multi-technology. • Support for several coordinate systems and mapping applications. • Data fusion. • Protection and security for both data and user access. • Standardized API for remote access. • Support for off-line data queries, not only on-line data and in real-time. • Depending on different user roles, it eases their tasks at different access levels: registration of WSNs, building blueprints, anchor and mobile node networks registration, generic sensor support, addition and retrieval of measurements and raw sensor data, multiple query support for filtered position estimations, etc. Moreover, we also contributed with different WSN physical layer implementations and experiments. And, due to collaborations with other research groups at different universities we have contributed with a customized hardware and software solution for localization based on RFID technology, as well as with the design of new antenna models based on linear-arrays of Electromagnetically Coupled Patchs (ECPs), valid for improving the WSN communication performance.[Resumo]O problema da localización no interior de edificios foi adquirindo cada vez máis importancia nos últimos anos debido á enorme demanda de novos servizos baseados en localización (LBSs). que apareeeron en todo tipo de sectores como eHealth. marketing por proximidade. smartparking e smart--cities. seguridade e emerxencias. loxística ou control industrial, entre outros. Estes sistemas habitualmente estan baseados na implementación de redes de sensores sen fíos (WSN) capaces de transmitir ou recibir sinais de radio (RF) para localizar dispositivos móbiles. xeralmente adheridos a vehículos. persoas ou animais. Menlres que en exteriores os sistemas de satélites baseados en tecnoloxías corno GPS funcionan correctamente na maioría de entornos. a localización en interiores non é unha tarefa sinxela de resolver e afnda inelúe múltiples retos. Principalmente aparecen problemas de propagación debido ás reflexións e rebotes dos sinais nas estruturas dos edificios. pero tarDén debido a atenuaci6ns e apantallamentos ocasionados xeralrnente por xente en movemento. Para resolver estes problemac;; é necesario implementar ac;; redes de sensores utilizando unha ou varias tecnoloxías sen fíos (como WiFi. ZigBee ou Bluetooth). a1gunhas delas disponibles en terminais sen fíos como smartphones ou tablets. Pero. por outra parte. tamén é necesario o uso de múltiples algoritmos e técnicas de localización para filtrar e posiblemente combinar os datos destas tecnoloxías. permitindo obter así sistemas de localización en tempo real (RTLS) robustos e coa maior precisión posible. Deste xeito. a aproximación máis usual na actualidade para resolver estos problemas é a implementación de sistemas de localización híbridos que soporten múltiples tecnoloxías simultaneamente. Nembargantes. O desenvolvemento destes sistemas leva implícito unha gran complexidade. Unha das alternativas comunmente aceptada é a implementación dunha arquitectura de software para localización, a cal ofrece varias vantaxes. En primeiro lugar, permite minimizar o número de restricci6ns multi-plataforma e multi-tecnoloxía á hora de acceder a distintos tipos de dispositivos hardware. En segundo lugar. facilítase a realización de tarefas comúns como a recolección e o almacenamento das medicións de sensores. Ademais, proporcinánse mecanismos para inserir e recuperar datos de localización ase como xestión de usuarios ou manipulación de múltiple" sistemas de mapas e coordenadas. Neste traballo presentamos varias solucións á hora de implementar arquitecturas de software para localización. comenzando por unha mono-tecnoloxía baseada unicarnente na recolección de niveis de sinal RSS, que evoluciona posteriormente a unha arquitectura multi-tecnoloxía. As solucións propostas ofrecen diferentes funcionalidades que resolven moitos dos problemas asociados aos sistemas híbridos RTLS, entre as que podemos destacar: • Multi-tecnoloxía. • Soporte de múltiples sistemas de coordenadas e de aplicacións de mapas. • Fusión de datos. • Protección e seguridad, tanto de datos como de acceso de usuarios. • API estandarizado para acceso remoto. • Soporte de consultas de datos off-line, non só on-line e en tempo real. • Facilidade de uso para os diferentes usuarios que utilicen a plataforma mediante chamadas a varios niveis: rexistro de WSNs, planos de edificios, rexistro de redes de áncoras e de nodos móviles, soporte de sensores xenéricos, inserción e consulta de medici6ns e de datos sensoriais en ero. inserción e consulta de posicións estimadas por algoritmos de localización, etc. Tamén contribuimos con múltiples implementacións da capa física de WSNs e experimentos. E grazas á colaboración con outros grupos de investigación de diferentes universidades puidemos, por unha parte, contribuir cunha solución de hardware e software para localización baseada en tecnoloxía RFID e, por outra parte, no deseño de novos modelos de antenas baseados en arrays lineais de ECPs, válidos para mellorar o rendemento das comunicacións en WSNs.[Resumen] El problema de la localización en el interior de edificios ha ido adquiriendo cada vez más importancia en los últimos años debido a la enorme demanda de nuevos servicios basados en localización (LBSs), que han ido apareciendo en la industria en sectores de todo tipo como eHeallb, marketing por proximidad, smart-parking y smart-cities, seguridad y emergeocias, logística o control industrial, entre otros. Estos sistemas habitualmeote se basan en la implementación de redes de sensores inalámbricos (WSN) capaces de transmitir o recibir señales de radio (RF) para localizar dispositivos móviles, generalmente adheridos a vehículos, personas o artimales. Mientras que en exteriores los sistemas satelitales basados en tecnologías como GPS funcionan correctamente en la mayoría de entornos, la localización en inleriores todavía plantea múltiples retos y no es una tarea sencilla de resolver. Principalmente aparecen problemas de propagación debido a los reflejos y rebotes de las sefiales en las estructuras de los edificios, pero también debido a atenuaciones y apantallamientos ocasionados generalmente por gente en movimiento. Para resolver estos problemas es necesario implementar Jas redes de sensores utilizando una o varias tecnologías inalámbricas (como pueden ser WiFí, ZigBee o Bluetooth), algunas de ellas disportibles en terminales inalámbricos como smartphones o tablets. Pero, por otra parte, también es necesario el uso de múltiples algoritmos y técnicas de localización, para filtrar y posiblemente combinar los datos de estas tecnologías, permitiendo obtener así sistemas de localización en tiempo real (RTLS) robustos y con la mayor precisión posible. De este modo, la aproximación más usual en la actualidad para resolver estos problemas es la implementación de sistemas de localización híbridos que soporten múltiples tecnologías simultáneamente. No obstante, el desarrollo de estos sistemas lleva implícito una gran complejidad. Una de las alternativas comúnmente aceptada es la implementación de una arquitectura de software para localización, que ofrece varias ventajas. En primer lugar, permite minimizar el número de restricciones multi-plataforma y multi-tecnología a la hora de acceder a distintos tipos de dispositivos hardware. En segundo lugar, se facilitan tareas comunes como la recolección y almacenamiento de las mediciones de los sensores. Además. se proveen mecanismos para insertar y recuperar datos de localización así como gestión de usuarios o manejo de múltiples sistemas de mapas y coordenadas. En este trabajo presentamos varias soluciones a la hora de implementar arquitecturas de software para localización, empezando por una mono-tecnología basada únicamente en la recoleccion de niveles de señal RSS, que se evoluciona posteriormente a una arquitectura mllltitecnología. Las soluciones propuestas ofrecen diferentes funcionalidades que resuelven muchos de los problemas asociados a los sistemas híbridos RTLS, entre las que podemos destacar: Multi-tecnología. Soporte de múltiples sistemas de coordenadas y de aplicaciones de mapas. • Fusión de datos. • Protección y seguridad, tanto de datos como de acceso de usuarios. • API estandarizado para acceso remoto. • Soporte de consultas de datos off-line, no solo on-line y en tiempo real. • Facilidad de uso para los diferentes usuarios que utilicen la plataforma, mediante llamadas a varios rtiveles: registro de WSNs, planos de edificios, registro de redes de anchors y de nodos móviles, soporte de sensores genéricos, inserción y consulta de mediciones y de datos sensoriales en crudo, inserción y consulta de posiciones estimadas por algoritmos de localización, etc. También contribuimos con múltiples implementaciones de la capa física de WSNs y experimentos. y gracias a la colaboración Con otros grupos de investigación de diferentes universidades hemos podido, por una parte, contribuir con una soluciÓn de hardware y software para localización basada en tecnología RFID y, por otra parte, en el diseño de nuevos modelos de antenas basados en arrays lineales de ECPs, válidos para mejorar el rendimiento de las comunicaciones en WSNs
    corecore