15,384 research outputs found

    Spartan Daily, February 6, 2018

    Get PDF
    Volume 150, Issue 5https://scholarworks.sjsu.edu/spartan_daily_2018/1004/thumbnail.jp

    Phylogenetic Networks Do not Need to Be Complex: Using Fewer Reticulations to Represent Conflicting Clusters

    Get PDF
    Phylogenetic trees are widely used to display estimates of how groups of species evolved. Each phylogenetic tree can be seen as a collection of clusters, subgroups of the species that evolved from a common ancestor. When phylogenetic trees are obtained for several data sets (e.g. for different genes), then their clusters are often contradicting. Consequently, the set of all clusters of such a data set cannot be combined into a single phylogenetic tree. Phylogenetic networks are a generalization of phylogenetic trees that can be used to display more complex evolutionary histories, including reticulate events such as hybridizations, recombinations and horizontal gene transfers. Here we present the new CASS algorithm that can combine any set of clusters into a phylogenetic network. We show that the networks constructed by CASS are usually simpler than networks constructed by other available methods. Moreover, we show that CASS is guaranteed to produce a network with at most two reticulations per biconnected component, whenever such a network exists. We have implemented CASS and integrated it in the freely available Dendroscope software

    Experimental Study of Remote Job Submission and Execution on LRM through Grid Computing Mechanisms

    Full text link
    Remote job submission and execution is fundamental requirement of distributed computing done using Cluster computing. However, Cluster computing limits usage within a single organization. Grid computing environment can allow use of resources for remote job execution that are available in other organizations. This paper discusses concepts of batch-job execution using LRM and using Grid. The paper discusses two ways of preparing test Grid computing environment that we use for experimental testing of concepts. This paper presents experimental testing of remote job submission and execution mechanisms through LRM specific way and Grid computing ways. Moreover, the paper also discusses various problems faced while working with Grid computing environment and discusses their trouble-shootings. The understanding and experimental testing presented in this paper would become very useful to researchers who are new to the field of job management in Grid.Comment: Fourth International Conference on Advanced Computing & Communication Technologies (ACCT), 201

    Spartan Daily, March 26, 2019

    Get PDF
    Volume 152, Issue 26https://scholarworks.sjsu.edu/spartan_daily_2019/1025/thumbnail.jp

    Piecewise Latent Variables for Neural Variational Text Processing

    Full text link
    Advances in neural variational inference have facilitated the learning of powerful directed graphical models with continuous latent variables, such as variational autoencoders. The hope is that such models will learn to represent rich, multi-modal latent factors in real-world data, such as natural language text. However, current models often assume simplistic priors on the latent variables - such as the uni-modal Gaussian distribution - which are incapable of representing complex latent factors efficiently. To overcome this restriction, we propose the simple, but highly flexible, piecewise constant distribution. This distribution has the capacity to represent an exponential number of modes of a latent target distribution, while remaining mathematically tractable. Our results demonstrate that incorporating this new latent distribution into different models yields substantial improvements in natural language processing tasks such as document modeling and natural language generation for dialogue.Comment: 19 pages, 2 figures, 8 tables; EMNLP 201

    A high-resolution pointing system for fast scanning platforms: The EBEX example

    Full text link
    The E and B experiment (EBEX) is a balloon-borne telescope designed to measure the polarization of the cosmic microwave background with 8' resolution employing a gondola scanning with speeds of order degree per second. In January 2013, EBEX completed 11 days of observations in a flight over Antarctica covering \sim 6000 square degrees of the sky. The payload is equipped with two redundant star cameras and two sets of three orthogonal gyroscopes to reconstruct the telescope attitude. The EBEX science goals require the pointing to be reconstructed to approximately 10" in the map domain, and in-flight attitude control requires the real time pointing to be accurate to \sim 0.5^{\circ} . The high velocity scan strategy of EBEX coupled to its float altitude only permits the star cameras to take images at scan turnarounds, every \sim 40 seconds, and thus requires the development of a pointing system with low noise gyroscopes and carefully controlled systematic errors. Here we report on the design of the pointing system and on a simulation pipeline developed to understand and minimize the effects of systematic errors. The performance of the system is evaluated using the 2012/2013 flight data, and we show that we achieve a pointing error with RMS=25" on 40 seconds azimuth throws, corresponding to an error of \sim 4.6" in the map domain.Comment: 14 pages, Proceedings of the 2015 IEEE Aerospace Conferenc

    Are economic ideas a sustainable commons? A study of the exchange of creative economics

    Get PDF
    In this essay I claim that productive markets need not necessarily involve clearly defined and enforced property rights, upon which a price system can be used to allocate resources. I shall pursue this thought by an examination of the mechanisms that facilitate the exchange of economic ideas, and link academic norms to the emerging theoretical justification for open source software, and “free culture”.economic ideas, commons, free culture, journals
    corecore