3,050 research outputs found

    Bidirectional modulation of numerical magnitude

    Get PDF

    Stereo disparity improves color constancy

    Get PDF
    AbstractBinocular disparity is an aspect of natural viewing. This research investigates whether disparity affects surface color perception. Achromatic settings were obtained and compared for two stereograms of a scene with specular reflections, one stereogram with binocular disparity and one without it (cyclopean view). Binocular disparity was found to improve color constancy. Next, the geometry of specular highlights, which is distorted without binocular disparity, was specifically examined. Measurements compared color constancy with specular reflections that were either normal (with stereo disparity) or distorted (cyclopean view of the specularities). No significant change in constancy was found due to the geometrical distortion of specular highlights that occurs without stereo disparity, suggesting that constancy depends on other features of the percept affected by disparity. The results are discussed in terms of illuminant estimation in surface color perception

    Natural Perspective: Mapping Visual Space with Art and Science

    Get PDF
    Following its discovery in fifteenth-century Italy, linear perspective has often been hailed as the most accurate method of projecting three-dimensional visual space onto a two-dimensional picture plane. However, when we survey the history of European art it is evident that few artists fully complied with its mathematical rules, despite many of them being rigorously trained in its procedures. In this paper, we will consider how artists have actually depicted visual space, and present evidence that images created according to a “natural” perspective (NP) used by artists are judged as better representations of visual space than those created using standard linear (LP) and curvilinear fisheye (FP) projective geometries. In this study, we built a real three-dimensional scene and produced photographs of the scene in three different perspectives (NP, LP and FP). An online experiment in which we asked people to rank the perspectives in order of preference showed a clear preference for NP compared to the FP and LP. In a second experiment, participants were asked to view the real scene and rate each perspective on a range of psychological variables. Results showed that NP was the most preferred and the most effective in depicting the physical space naturally. We discuss the implications of these results and the advantages and limitations of our approach for studying the global metric and geometrical structure of visual space

    Perceptual Scale Expansion: An Efficient Angular Coding Strategy For Locomotor Space

    Get PDF
    Whereas most sensory information is coded on a logarithmic scale, linear expansion of a limited range may provide a more efficient coding for the angular variables important to precise motor control. In four experiments, we show that the perceived declination of gaze, like the perceived orientation of surfaces, is coded on a distorted scale. The distortion seems to arise from a nearly linear expansion of the angular range close to horizontal/straight ahead and is evident in explicit verbal and nonverbal measures (Experiments 1 and 2), as well as in implicit measures of perceived gaze direction (Experiment 4). The theory is advanced that this scale expansion (by a factor of about 1.5) may serve a functional goal of coding efficiency for angular perceptual variables. The scale expansion of perceived gaze declination is accompanied by a corresponding expansion of perceived optical slants in the same range (Experiments 3 and 4). These dual distortions can account for the explicit misperception of distance typically obtained by direct report and exocentric matching, while allowing for accurate spatial action to be understood as the result of calibration

    Key characteristics of specular stereo.

    Get PDF
    Because specular reflection is view-dependent, shiny surfaces behave radically differently from matte, textured surfaces when viewed with two eyes. As a result, specular reflections pose substantial problems for binocular stereopsis. Here we use a combination of computer graphics and geometrical analysis to characterize the key respects in which specular stereo differs from standard stereo, to identify how and why the human visual system fails to reconstruct depths correctly from specular reflections. We describe rendering of stereoscopic images of specular surfaces in which the disparity information can be varied parametrically and independently of monocular appearance. Using the generated surfaces and images, we explain how stereo correspondence can be established with known and unknown surface geometry. We show that even with known geometry, stereo matching for specular surfaces is nontrivial because points in one eye may have zero, one, or multiple matches in the other eye. Matching features typically yield skew (nonintersecting) rays, leading to substantial ortho-epipolar components to the disparities, which makes deriving depth values from matches nontrivial. We suggest that the human visual system may base its depth estimates solely on the epipolar components of disparities while treating the ortho-epipolar components as a measure of the underlying reliability of the disparity signals. Reconstructing virtual surfaces according to these principles reveals that they are piece-wise smooth with very large discontinuities close to inflection points on the physical surface. Together, these distinctive characteristics lead to cues that the visual system could use to diagnose specular reflections from binocular information.The work was funded by the Wellcome Trust (grants 08459/Z/07/Z & 095183/Z/10/Z) and the EU Marie Curie Initial Training Network “PRISM” (FP7-PEOPLE-2012-ITN, Agreement: 316746).This is the author accepted manuscript. The final version is available from ARVO via http://dx.doi.org/10.1167/14.14.1

    Neural Representations for Sensory-Motor Control, II: Learning a Head-Centered Visuomotor Representation of 3-D Target Position

    Full text link
    A neural network model is described for how an invariant head-centered representation of 3-D target position can be autonomously learned by the brain in real time. Once learned, such a target representation may be used to control both eye and limb movements. The target representation is derived from the positions of both eyes in the head, and the locations which the target activates on the retinas of both eyes. A Vector Associative Map, or YAM, learns the many-to-one transformation from multiple combinations of eye-and-retinal position to invariant 3-D target position. Eye position is derived from outflow movement signals to the eye muscles. Two successive stages of opponent processing convert these corollary discharges into a. head-centered representation that closely approximates the azimuth, elevation, and vergence of the eyes' gaze position with respect to a cyclopean origin located between the eyes. YAM learning combines this cyclopean representation of present gaze position with binocular retinal information about target position into an invariant representation of 3-D target position with respect to the head. YAM learning can use a teaching vector that is externally derived from the positions of the eyes when they foveate the target. A YAM can also autonomously discover and learn the invariant representation, without an explicit teacher, by generating internal error signals from environmental fluctuations in which these invariant properties are implicit. YAM error signals are computed by Difference Vectors, or DVs, that are zeroed by the YAM learning process. YAMs may be organized into YAM Cascades for learning and performing both sensory-to-spatial maps and spatial-to-motor maps. These multiple uses clarify why DV-type properties are computed by cells in the parietal, frontal, and motor cortices of many mammals. YAMs are modulated by gating signals that express different aspects of the will-to-act. These signals transform a single invariant representation into movements of different speed (GO signal) and size (GRO signal), and thereby enable YAM controllers to match a planned action sequence to variable environmental conditions.National Science Foundation (IRI-87-16960, IRI-90-24877); Office of Naval Research (N00014-92-J-1309

    A Comparison Of Two Theories Of Perceived Distance On The Ground Plane: The Angular Expansion Hypothesis And The Intrinsic Bias Hypothesis

    Get PDF
    Two theories of distance perception-ie, the angular expansion hypothesis (Durgin and Li, 2011 Attention, Perception, & Psychophysics 73 1856-1870) and the intrinsic bias hypothesis (Ooi et al, 2006 Perception 35 605-624)-are compared. Both theories attribute exocentric distance foreshortening to an exaggeration in perceived slant, but their fundamental geometrical assumptions are very different. The intrinsic bias hypothesis assumes a constant bias in perceived geographical slant of the ground plane and predicts both perceived egocentric and exocentric distances are increasingly compressed. In contrast, the angular expansion hypothesis assumes exaggerations in perceived gaze angle and perceived optical slant. Because the bias functions of the two angular variables are different, it allows the angular expansion hypothesis to distinguish two types of distance foreshortening-the linear compression in perceived egocentric distance and the nonlinear compression in perceived exocentric distance. While the intrinsic bias is proposed only for explaining distance biases, the angular expansion hypothesis provides accounts for a broader range of spatial biases
    • 

    corecore