13 research outputs found

    Workshop on Fuzzy Control Systems and Space Station Applications

    Get PDF
    The Workshop on Fuzzy Control Systems and Space Station Applications was held on 14-15 Nov. 1990. The workshop was co-sponsored by McDonnell Douglas Space Systems Company and NASA Ames Research Center. Proceedings of the workshop are presented

    Affinity-Based Reinforcement Learning : A New Paradigm for Agent Interpretability

    Get PDF
    The steady increase in complexity of reinforcement learning (RL) algorithms is accompanied by a corresponding increase in opacity that obfuscates insights into their devised strategies. Methods in explainable artificial intelligence seek to mitigate this opacity by either creating transparent algorithms or extracting explanations post hoc. A third category exists that allows the developer to affect what agents learn: constrained RL has been used in safety-critical applications and prohibits agents from visiting certain states; preference-based RL agents have been used in robotics applications and learn state-action preferences instead of traditional reward functions. We propose a new affinity-based RL paradigm in which agents learn strategies that are partially decoupled from reward functions. Unlike entropy regularisation, we regularise the objective function with a distinct action distribution that represents a desired behaviour; we encourage the agent to act according to a prior while learning to maximise rewards. The result is an inherently interpretable agent that solves problems with an intrinsic affinity for certain actions. We demonstrate the utility of our method in a financial application: we learn continuous time-variant compositions of prototypical policies, each interpretable by its action affinities, that are globally interpretable according to customers’ financial personalities. Our method combines advantages from both constrained RL and preferencebased RL: it retains the reward function but generalises the policy to match a defined behaviour, thus avoiding problems such as reward shaping and hacking. Unlike Boolean task composition, our method is a fuzzy superposition of different prototypical strategies to arrive at a more complex, yet interpretable, strategy.publishedVersio

    Uncertainty and Interpretability Studies in Soft Computing with an Application to Complex Manufacturing Systems

    Get PDF
    In systems modelling and control theory, the benefits of applying neural networks have been extensively studied. Particularly in manufacturing processes, such as the prediction of mechanical properties of heat treated steels. However, modern industrial processes usually involve large amounts of data and a range of non-linear effects and interactions that might hinder their model interpretation. For example, in steel manufacturing the understanding of complex mechanisms that lead to the mechanical properties which are generated by the heat treatment process is vital. This knowledge is not available via numerical models, therefore an experienced metallurgist estimates the model parameters to obtain the required properties. This human knowledge and perception sometimes can be imprecise leading to a kind of cognitive uncertainty such as vagueness and ambiguity when making decisions. In system classification, this may be translated into a system deficiency - for example, small input changes in system attributes may result in a sudden and inappropriate change for class assignation. In order to address this issue, practitioners and researches have developed systems that are functional equivalent to fuzzy systems and neural networks. Such systems provide a morphology that mimics the human ability of reasoning via the qualitative aspects of fuzzy information rather by its quantitative analysis. Furthermore, these models are able to learn from data sets and to describe the associated interactions and non-linearities in the data. However, in a like-manner to neural networks, a neural fuzzy system may suffer from a lost of interpretability and transparency when making decisions. This is mainly due to the application of adaptive approaches for its parameter identification. Since the RBF-NN can be treated as a fuzzy inference engine, this thesis presents several methodologies that quantify different types of uncertainty and its influence on the model interpretability and transparency of the RBF-NN during its parameter identification. Particularly, three kind of uncertainty sources in relation to the RBF-NN are studied, namely: entropy, fuzziness and ambiguity. First, a methodology based on Granular Computing (GrC), neutrosophic sets and the RBF-NN is presented. The objective of this methodology is to quantify the hesitation produced during the granular compression at the low level of interpretability of the RBF-NN via the use of neutrosophic sets. This study also aims to enhance the disitnguishability and hence the transparency of the initial fuzzy partition. The effectiveness of the proposed methodology is tested against a real case study for the prediction of the properties of heat-treated steels. Secondly, a new Interval Type-2 Radial Basis Function Neural Network (IT2-RBF-NN) is introduced as a new modelling framework. The IT2-RBF-NN takes advantage of the functional equivalence between FLSs of type-1 and the RBF-NN so as to construct an Interval Type-2 Fuzzy Logic System (IT2-FLS) that is able to deal with linguistic uncertainty and perceptions in the RBF-NN rule base. This gave raise to different combinations when optimising the IT2-RBF-NN parameters. Finally, a twofold study for uncertainty assessment at the high-level of interpretability of the RBF-NN is provided. On the one hand, the first study proposes a new methodology to quantify the a) fuzziness and the b) ambiguity at each RU, and during the formation of the rule base via the use of neutrosophic sets theory. The aim of this methodology is to calculate the associated fuzziness of each rule and then the ambiguity related to each normalised consequence of the fuzzy rules that result from the overlapping and to the choice with one-to-many decisions respectively. On the other hand, a second study proposes a new methodology to quantify the entropy and the fuzziness that come out from the redundancy phenomenon during the parameter identification. To conclude this work, the experimental results obtained through the application of the proposed methodologies for modelling two well-known benchmark data sets and for the prediction of mechanical properties of heat-treated steels conducted to publication of three articles in two peer-reviewed journals and one international conference

    Monitoring Complex Processes to Verify System Conformance: A Declarative Rule-Based Framework

    Get PDF
    Over the last 60 years, computers and software have favoured incredible advancements in every field. Nowadays, however, these systems are so complicated that it is difficult – if not challenging – to understand whether they meet some requirement or are able to show some desired behaviour or property. This dissertation introduces a Just-In-Time (JIT) a posteriori approach to perform the conformance check to identify any deviation from the desired behaviour as soon as possible, and possibly apply some corrections. The declarative framework that implements our approach – entirely developed on the promising open source forward-chaining Production Rule System (PRS) named Drools – consists of three components: 1. a monitoring module based on a novel, efficient implementation of Event Calculus (EC), 2. a general purpose hybrid reasoning module (the first of its genre) merging temporal, semantic, fuzzy and rule-based reasoning, 3. a logic formalism based on the concept of expectations introducing Event-Condition-Expectation rules (ECE-rules) to assess the global conformance of a system. The framework is also accompanied by an optional module that provides Probabilistic Inductive Logic Programming (PILP). By shifting the conformance check from after execution to just in time, this approach combines the advantages of many a posteriori and a priori methods proposed in literature. Quite remarkably, if the corrective actions are explicitly given, the reactive nature of this methodology allows to reconcile any deviations from the desired behaviour as soon as it is detected. In conclusion, the proposed methodology brings some advancements to solve the problem of the conformance checking, helping to fill the gap between humans and the increasingly complex technology.Negli ultimi 60 anni, i computer e i programmi hanno favorito incredibili avanzamenti in ogni campo. Oggigiorno, purtroppo, questi sistemi sono così complicati che è difficile – se non impossibile – capire se soddisfano qualche requisito o mostrano un comportamento o una proprietà desiderati. Questa tesi introduce un approccio a posteriori Just-In-Time (JIT) per effettuare il controllo di conformità ed identificare appena possibile ogni deviazione dal comportamento desiderato, ed eventualmente applicare qualche correzione. Il framework dichiarativo che implementa il nostro approccio – interamente sviluppato su una promettente piattaforma open source di Production Rule System (PRS) chiamata Drools – si compone di tre elementi: 1. un modulo per il monitoraggio basato su una nuova implementazione efficiente di Event Calculus (EC), 2. un modulo generale per il ragionamento ibrido (il primo del suo genere) che supporta ragionamento temporale, semantico, fuzzy e a regole, 3. un formalismo logico basato sul concetto di aspettativa che introduce le Event-Condition-Expectation rules (ECE-rules) per valutare la conformità globale di un sistema. Il framework è anche accompagnato da un modulo opzionale che fornisce Probabilistic Inductive Logic Programming (PILP). Spostando il controllo di conformità da dopo l’esecuzione ad appena in tempo, questo approccio combina i vantaggi di molti metodi a posteriori e a priori proposti in letteratura. Si noti che, se le azioni correttive sono fornite esplicitamente, la natura reattiva di questo metodo consente di conciliare le deviazioni dal comportamento desiderato non appena questo viene rilevato. In conclusione, la metodologia proposta introduce alcuni avanzamenti per risolvere il problema del controllo di conformità, contribuendo a colmare il divario tra l’uomo e la tecnologia, sempre più complessa

    Handbook of Mathematical Geosciences

    Get PDF
    This Open Access handbook published at the IAMG's 50th anniversary, presents a compilation of invited path-breaking research contributions by award-winning geoscientists who have been instrumental in shaping the IAMG. It contains 45 chapters that are categorized broadly into five parts (i) theory, (ii) general applications, (iii) exploration and resource estimation, (iv) reviews, and (v) reminiscences covering related topics like mathematical geosciences, mathematical morphology, geostatistics, fractals and multifractals, spatial statistics, multipoint geostatistics, compositional data analysis, informatics, geocomputation, numerical methods, and chaos theory in the geosciences

    Optimization Models Using Fuzzy Sets and Possibility Theory

    Get PDF
    Optimization is of central concern to a number of disciplines. Operations Research and Decision Theory are often considered to be identical with optimization. But also in other areas such as engineering design, regional policy, logistics and many others, the search for optimal solutions is one of the prime goals. The methods and models which have been used over the last decades in these areas have primarily been "hard" or "crisp", i.e. the solutions were considered to be either feasible or unfeasible, either above a certain aspiration level or below. This dichotomous structure of methods very often forced the modeler to approximate real problem situations of the more-or-less type by yes-or-no-type models, the solutions of which might turn out not to be the solutions to the real problems. This is particularly true if the problem under consideration includes vaguely defined relationships, human evaluations, uncertainty due to inconsistent or incomplete evidence, if natural language has to be modeled or if state variables can only be described approximately. Until recently, everything which was not known with certainty, i.e. which was not known to be either true or false or which was not known to either happen with certainty or to be impossible to occur, was modeled by means of probabilities. This holds in particular for uncertainties concerning the occurrence of events. probability theory was used irrespective of whether its axioms (such as, for instance, the law of large numbers) were satisfied or not, or whether the "events" could really be described unequivocally and crisply. In the meantime one has become aware of the fact that uncertainties concerning the occurrence as well as concerning the description of events ought to be modeled in a much more differentiated way. New concepts and theories have been developed to do this: the theory of evidence, possibility theory, the theory of fuzzy sets have been advanced to a stage of remarkable maturity and have already been applied successfully in numerous cases and in many areas. Unluckily, the progress in these areas has been so fast in the last years that it has not been documented in a way which makes these results easily accessible and understandable for newcomers to these areas: text-books have not been able to keep up with the speed of new developments; edited volumes have been published which are very useful for specialists in these areas, but which are of very little use to nonspecialists because they assume too much of a background in fuzzy set theory. To a certain degree the same is true for the existing professional journals in the area of fuzzy set theory. Altogether this volume is a very important and appreciable contribution to the literature on fuzzy set theory

    Proceedings of the 5th MIT/ONR Workshop on C[3] Systems, held at Naval Postgraduate School, Monterey, California, August 23 to 27, 1982

    Get PDF
    "December 1982."Includes bibliographies and index.Office of Naval Research Contract no. ONR/N00014-77-C-0532 NR041-519edited by Michael Athans ... [et al.]

    SIS 2017. Statistics and Data Science: new challenges, new generations

    Get PDF
    The 2017 SIS Conference aims to highlight the crucial role of the Statistics in Data Science. In this new domain of ‘meaning’ extracted from the data, the increasing amount of produced and available data in databases, nowadays, has brought new challenges. That involves different fields of statistics, machine learning, information and computer science, optimization, pattern recognition. These afford together a considerable contribute in the analysis of ‘Big data’, open data, relational and complex data, structured and no-structured. The interest is to collect the contributes which provide from the different domains of Statistics, in the high dimensional data quality validation, sampling extraction, dimensional reduction, pattern selection, data modelling, testing hypotheses and confirming conclusions drawn from the data

    LIPIcs, Volume 244, ESA 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 244, ESA 2022, Complete Volum

    7th INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ENGINEERING - SIE 2018, PROCEEDINGS

    Get PDF
    editors Vesna Spasojević-Brkić, Mirjana Misita, Dragan D. Milanovi
    corecore