7 research outputs found

    Hardware Architectures and Implementations for Associative Memories : the Building Blocks of Hierarchically Distributed Memories

    Get PDF
    During the past several decades, the semiconductor industry has grown into a global industry with revenues around $300 billion. Intel no longer relies on only transistor scaling for higher CPU performance, but instead, focuses more on multiple cores on a single die. It has been projected that in 2016 most CMOS circuits will be manufactured with 22 nm process. The CMOS circuits will have a large number of defects. Especially when the transistor goes below sub-micron, the original deterministic circuits will start having probabilistic characteristics. Hence, it would be challenging to map traditional computational models onto probabilistic circuits, suggesting a need for fault-tolerant computational algorithms. Biologically inspired algorithms, or associative memories (AMs)—the building blocks of cortical hierarchically distributed memories (HDMs) discussed in this dissertation, exhibit a remarkable match to the nano-scale electronics, besides having great fault-tolerance ability. Research on the potential mapping of the HDM onto CMOL (hybrid CMOS/nanoelectronic circuits) nanogrids provides useful insight into the development of non-von Neumann neuromorphic architectures and semiconductor industry. In this dissertation, we investigated the implementations of AMs on different hardware platforms, including microprocessor based personal computer (PC), PC cluster, field programmable gate arrays (FPGA), CMOS, and CMOL nanogrids. We studied two types of neural associative memory models, with and without temporal information. In this research, we first decomposed the computational models into basic and common operations, such as matrix-vector inner-product and k-winners-take-all (k-WTA). We then analyzed the baseline performance/price ratio of implementing the AMs with a PC. We continued with a similar performance/price analysis of the implementations on more parallel hardware platforms, such as PC cluster and FPGA. However, the majority of the research emphasized on the implementations with all digital and mixed-signal full-custom CMOS and CMOL nanogrids. In this dissertation, we draw the conclusion that the mixed-signal CMOL nanogrids exhibit the best performance/price ratio over other hardware platforms. We also highlighted some of the trade-offs between dedicated and virtualized hardware circuits for the HDM models. A simple time-multiplexing scheme for the digital CMOS implementations can achieve comparable throughput as the mixed-signal CMOL nanogrids

    Pulse stream VLSI circuits and techniques for the implementation of neural networks

    Get PDF

    Simulation of networks of spiking neurons: A review of tools and strategies

    Full text link
    We review different aspects of the simulation of spiking neural networks. We start by reviewing the different types of simulation strategies and algorithms that are currently implemented. We next review the precision of those simulation strategies, in particular in cases where plasticity depends on the exact timing of the spikes. We overview different simulators and simulation environments presently available (restricted to those freely available, open source and documented). For each simulation tool, its advantages and pitfalls are reviewed, with an aim to allow the reader to identify which simulator is appropriate for a given task. Finally, we provide a series of benchmark simulations of different types of networks of spiking neurons, including Hodgkin-Huxley type, integrate-and-fire models, interacting with current-based or conductance-based synapses, using clock-driven or event-driven integration strategies. The same set of models are implemented on the different simulators, and the codes are made available. The ultimate goal of this review is to provide a resource to facilitate identifying the appropriate integration strategy and simulation tool to use for a given modeling problem related to spiking neural networks.Comment: 49 pages, 24 figures, 1 table; review article, Journal of Computational Neuroscience, in press (2007

    High Level Synthesis of Neural Network Chips

    Get PDF
    This thesis investigates the development of a silicon compiler dedicated to generate Application-Specific Neural Network Chips (ASNNCs) from a high level C-based behavioural specification language. The aim is to fully integrate the silicon compiler with the ESPRIT II Pygmalion neural programming environment. The integration of these two tools permits the translation of a neural network application specified in nC, the Pygmalion's C-based neural programming language, into either binary (for simulation) or silicon (for execution in hardware). Several applications benefit from this approach, in particular the ones that require real-time execution, for which a true neural computer is required. This research comprises two major parts: extension of the Pygmalion neural programming environment, to support automatic generation of neural network chips from the nC specification language; and implementation of the high level synthesis part of the neural silicon compiler. The extension of the neural programming environment has been developed to adapt the nC language to hardware constraints, and to provide the environment with a simulation tool to test in advance the performance of the neural chips. Firstly, new hardware-specific requisites have been incorporated to nC. However, special attention has been taken to avoid transforming nC into a hardware-oriented language, since the system assumes minimum (or even no) knowledge of VLSI design from the application developer. Secondly, a simulator for neural network hardware has been developed, which assesses how well the generated circuit will perform the neural computation. Lastly, a hardware library of neural network models associated with a target VLSI architecture has been built. The development of the neural silicon compiler focuses on the high level synthesis part of the process. The goal of the silicon compiler is to take nC as the input language and automatically translate it into one or more identical integrated circuits, which are specified in VHDL (the IEEE standard hardware description language) at the register transfer level. The development of the high level synthesis comprises four major parts: firstly, compilation and software-like optimisations of nC; secondly, transformation of the compiled code into a graph-based internal representation, which has been designed to be the basis for the hardware synthesis; thirdly, further transformations and hardware-like optimisations on the internal representation; and finally, creation of the neural chip's data path and control unit that implement the behaviour specified in nC. Special attention has been devoted to the creation of optimised hardware structures for the ASNNCs employing both phases of neural computing on-chip: recall and learning. This is achieved through the data path and control synthesis algorithms, which adopt a heuristic approach that targets the generated hardware structure of the neural chip in a specific VLSI architecture, namely the Generic Neuron. The viability, concerning the effective use of silicon area versus speed, has been evaluated through the automatic generation of a VHDL description for the neural chip employing the Back Propagation neural network model. This description is compared with the one created manually by a hardware designer
    corecore