908 research outputs found

    Calabi-Yau Manifolds, Hermitian Yang-Mills Instantons and Mirror Symmetry

    Get PDF
    We address the issue why Calabi-Yau manifolds exist with a mirror pair. We observe that the irreducible spinor representation of the Lorentz group Spin(6) requires us to consider the vector spaces of two-forms and four-forms on an equal footing. The doubling of the two-form vector space due to the Hodge duality doubles the variety of six-dimensional spin manifolds. We explore how the doubling is related to the mirror symmetry of Calabi-Yau manifolds. Via the gauge theory formulation of six-dimensional Riemannian manifolds, we show that the curvature tensor of a Calabi-Yau manifold satisfies the Hermitian Yang-Mills equations on the Calabi-Yau manifold. Therefore the mirror symmetry of Calabi-Yau manifolds can be recast as the mirror pair of Hermitian Yang-Mills instantons. We discuss the mirror symmetry from the gauge theory perspective.Comment: v5; 49 pages, version to appear in Advances in High Energy Physic

    Applications of hidden symmetries to black hole physics

    Full text link
    This work is a brief review of applications of hidden symmetries to black hole physics. Symmetry is one of the most important concepts of the science. In physics and mathematics the symmetry allows one to simplify a problem, and often to make it solvable. According to the Noether theorem symmetries are responsible for conservation laws. Besides evident (explicit) spacetime symmetries, responsible for conservation of energy, momentum, and angular momentum of a system, there also exist what is called hidden symmetries, which are connected with higher order in momentum integrals of motion. A remarkable fact is that black holes in four and higher dimensions always possess a set (`tower') of explicit and hidden symmetries which make the equations of motion of particles and light completely integrable. The paper gives a general review of the recently obtained results. The main focus is on understanding why at all black holes have something (symmetry) to hide.Comment: This is an extended version of the talks at NEB-14 conference (June,Ioannina,Greece) and JGRG20 meeting (September, Kyoto, Japan

    Variational Approach to the Chiral Phase Transition in the Linear Sigma Model

    Get PDF
    The chiral phase transition at finite temperature is investigated in the linear sigma model, which is regarded as a low energy effective theory of QCD with three momentum cutoff, in the variational method with the Gaussian approximation in the functional Schroedinger picture. It is shown that the Goldstone theorem is retained and the meson pair excitations are automatically included by taking into account the linear response to the external fields. It is pointed out that the behavior of chiral phase transition depends on the three-momentum cutoff, which leads to the careful treatment of the problem.Comment: 14 pages, 5 figures, using PTPTeX cl

    Fluctuations and the Effective Moduli of an Isotropic, Random Aggregate of Identical, Frictionless Spheres

    Full text link
    We consider a random aggregate of identical frictionless elastic spheres that has first been subjected to an isotropic compression and then sheared. We assume that the average strain provides a good description of how stress is built up in the initial isotropic compression. However, when calculating the increment in the displacement between a typical pair of contaction particles due to the shearing, we employ force equilibrium for the particles of the pair, assuming that the average strain provides a good approximation for their interactions with their neighbors. The incorporation of these additional degrees of freedom in the displacement of a typical pair relaxes the system, leading to a decrease in the effective moduli of the aggregate. The introduction of simple models for the statistics of the ordinary and conditional averages contributes an additional decrease in moduli. The resulting value of the shear modulus is in far better agreement with that measured in numerical simulations
    corecore