33,638 research outputs found

    Directed Exploration using a Modified Distance Transform

    Get PDF
    Mobile robots operating in unknown environments need to build maps. To do so they must have an exploration algorithm to plan a path. This algorithm should guarantee that the whole of the environment, or at least some designated area, will be mapped. The path should also be optimal in some sense and not simply a "random walk" which is clearly inefficient. When multiple robots are involved, the algorithm also needs to take advantage of the fact that the robots can share the task. In this paper we discuss a modification to the well-known distance transform that satisfies these requirements

    Human Swarm Interaction: An Experimental Study of Two Types of Interaction with Foraging Swarms

    Get PDF
    In this paper we present the first study of human-swarm interaction comparing two fundamental types of interaction, coined intermittent and environmental. These types are exemplified by two control methods, selection and beacon control, made available to a human operator to control a foraging swarm of robots. Selection and beacon control differ with respect to their temporal and spatial influence on the swarm and enable an operator to generate different strategies from the basic behaviors of the swarm. Selection control requires an active selection of groups of robots while beacon control exerts an influence on nearby robots within a set range. Both control methods are implemented in a testbed in which operators solve an information foraging problem by utilizing a set of swarm behaviors. The robotic swarm has only local communication and sensing capabilities. The number of robots in the swarm range from 50 to 200. Operator performance for each control method is compared in a series of missions in different environments with no obstacles up to cluttered and structured obstacles. In addition, performance is compared to simple and advanced autonomous swarms. Thirty-two participants were recruited for participation in the study. Autonomous swarm algorithms were tested in repeated simulations. Our results showed that selection control scales better to larger swarms and generally outperforms beacon control. Operators utilized different swarm behaviors with different frequency across control methods, suggesting an adaptation to different strategies induced by choice of control method. Simple autonomous swarms outperformed human operators in open environments, but operators adapted better to complex environments with obstacles. Human controlled swarms fell short of task-specific benchmarks under all conditions. Our results reinforce the importance of understanding and choosing appropriate types of human-swarm interaction when designing swarm systems, in addition to choosing appropriate swarm behaviors

    Conceptual spatial representations for indoor mobile robots

    Get PDF
    We present an approach for creating conceptual representations of human-made indoor environments using mobile robots. The concepts refer to spatial and functional properties of typical indoor environments. Following ïŹndings in cognitive psychology, our model is composed of layers representing maps at diïŹ€erent levels of abstraction. The complete system is integrated in a mobile robot endowed with laser and vision sensors for place and object recognition. The system also incorporates a linguistic framework that actively supports the map acquisition process, and which is used for situated dialogue. Finally, we discuss the capabilities of the integrated system

    RT-SLAM: A Generic and Real-Time Visual SLAM Implementation

    Full text link
    This article presents a new open-source C++ implementation to solve the SLAM problem, which is focused on genericity, versatility and high execution speed. It is based on an original object oriented architecture, that allows the combination of numerous sensors and landmark types, and the integration of various approaches proposed in the literature. The system capacities are illustrated by the presentation of an inertial/vision SLAM approach, for which several improvements over existing methods have been introduced, and that copes with very high dynamic motions. Results with a hand-held camera are presented.Comment: 10 page
    • 

    corecore