241 research outputs found

    Strengthening Privacy and Cybersecurity through Anonymization and Big Data

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    LZR: Identifying Unexpected Internet Services

    Get PDF
    International audienceInternet-wide scanning is a commonly used research technique that has helped uncover real-world attacks, find cryptographic weaknesses, and understand both operator and miscreant behavior. Studies that employ scanning have largely assumed that services are hosted on their IANA-assigned ports, overlooking the study of services on unusual ports. In this work, we investigate where Internet services are deployed in practice and evaluate the security posture of services on unexpected ports. We show protocol deployment is more diffuse than previously believed and that protocols run on many additional ports beyond their primary IANA-assigned port. For example, only 3% of HTTP and 6% of TLS services run on ports 80 and 443, respectively. Services on non-standard ports are more likely to be insecure, which results in studies dramatically underestimating the security posture of Internet hosts. Building on our observations, we introduce LZR ("Laser"), a system that identifies 99% of identifiable unexpected services in five handshakes and dramatically reduces the time needed to perform application-layer scans on ports with few responsive expected services (e.g., 5500% speedup on 27017/MongoDB). We conclude with recommendations for future studies

    How to accelerate your internet : a practical guide to bandwidth management and optimisation using open source software

    Get PDF
    xiii, 298 p. : ill. ; 24 cm.Libro ElectrónicoAccess to sufficient Internet bandwidth enables worldwide electronic collaboration, access to informational resources, rapid and effective communication, and grants membership to a global community. Therefore, bandwidth is probably the single most critical resource at the disposal of a modern organisation. The goal of this book is to provide practical information on how to gain the largest possible benefit from your connection to the Internet. By applying the monitoring and optimisation techniques discussed here, the effectiveness of your network can be significantly improved

    A testbed design for intrusion detection and mitigation in SDN architecture by using DPI

    Get PDF
    06.03.2018 tarihli ve 30352 sayılı Resmi Gazetede yayımlanan “Yükseköğretim Kanunu İle Bazı Kanun Ve Kanun Hükmünde Kararnamelerde Değişiklik Yapılması Hakkında Kanun” ile 18.06.2018 tarihli “Lisansüstü Tezlerin Elektronik Ortamda Toplanması, Düzenlenmesi ve Erişime Açılmasına İlişkin Yönerge” gereğince tam metin erişime açılmıştır.Son on yılda, ağları tasarlamak ve geliştirmek için kullanılan teknolojiler konusunda köklü değişiklikler yaşanmamıştır. Bu süre zarfında, ağa bağlı cihazlarının sayısı üstel olarak artarak bilgisayar ağlarının toplamı ve boyutunun artmasına yol açtı. Bu ise, veri merkezlerinde ve şirketlerde mevcut ağ yapılarının yönetimini daha da zorlaştırdı. Yazılım Tanımlı Ağ fikri, daha önce aynı cihazda sıkıştırılmış olan veri düzlemi ile denetim düzlemini birbirinden ayırmayı getirir ve böylece tüm ağ yapısının SDN denetleyici adı verilen merkezi bir yerden programlanmasına imkan verir. Bu yapı içerisindeki very düzlemi, kendisine gelen verileri SDN denetleyici tarafından belirlendiği şekilde bir sonraki düğüme ileten aptal cihazlardan oluşur. OpenFlow, SDN denetleyici ile very düzelmi cihazları arasındaki bağlantıyı sağlamak üzere yaygın olarak kullanılan haberleşme protokolüdür. Oluşturulan test düzeneği web uygulaması, anormal durum tespiti alt sistemi, floodlight denetleyiciye sahip SDN yapısı ve sFlow protokolü gibi çok sayıda bileşene sahiptir. Geliştirilen system, akan trafık üzerindeki tehditleri bulabilmek için paketlerin yük kısımlarını incelemektedir. Geliştirilen test düzeneğinin başarımını sorgulamak için DoS saldırısı göz önüne alınımıştır. Elde edilen sonuçlar SDN sistemlerin güvenliğiyle ilgili deneylerin oluşturulan bu test düzeneği ile kolayca gerçekleştirilebileceğini göstermektedir.For the last decade's technologies which is used to design and build networks have remained unchanged. In the meantime, the number of connected networking devices has raised exponentially which lead to that also the total and the size of computer networks has increased. Accordingly, the existing networks in data centers and companies have become much more difficult and harder to administrate. Software Defined Networking (SDN) idea brings the fact to separate the control plane from data plane which was previously tighten together in the same device, and thus allows the network to be programmed from a logically centralized place called SDN controller. The data plane in this structure consists of dump devices which are only capable of forwarding the data as instructed by the SDN controller. OpenFlow is the well-known protocol used to take the communication between the SDN controller and the forwarding devices. In this study, a new testbed has been implemented for anomaly detection in SDN. The testbed formed has several components such as a web based application, an anomaly detection sub-system, an SDN structure with floodlight controller and sFlow protocol. The system developed examines the payload of the packets in order to find any threats in ongoing traffic. In order to investigate the performance of the testbed developed, DoS attack has been considered. The results show that experiments related to security aspects of the SDN systems can be realized by the testbed, easily

    MediaSync: Handbook on Multimedia Synchronization

    Get PDF
    This book provides an approachable overview of the most recent advances in the fascinating field of media synchronization (mediasync), gathering contributions from the most representative and influential experts. Understanding the challenges of this field in the current multi-sensory, multi-device, and multi-protocol world is not an easy task. The book revisits the foundations of mediasync, including theoretical frameworks and models, highlights ongoing research efforts, like hybrid broadband broadcast (HBB) delivery and users' perception modeling (i.e., Quality of Experience or QoE), and paves the way for the future (e.g., towards the deployment of multi-sensory and ultra-realistic experiences). Although many advances around mediasync have been devised and deployed, this area of research is getting renewed attention to overcome remaining challenges in the next-generation (heterogeneous and ubiquitous) media ecosystem. Given the significant advances in this research area, its current relevance and the multiple disciplines it involves, the availability of a reference book on mediasync becomes necessary. This book fills the gap in this context. In particular, it addresses key aspects and reviews the most relevant contributions within the mediasync research space, from different perspectives. Mediasync: Handbook on Multimedia Synchronization is the perfect companion for scholars and practitioners that want to acquire strong knowledge about this research area, and also approach the challenges behind ensuring the best mediated experiences, by providing the adequate synchronization between the media elements that constitute these experiences

    Automated Approaches for Program Verification and Repair

    Get PDF
    Formal methods techniques, such as verification, analysis, and synthesis,allow programmers to prove properties of their programs, or automatically derive programs from specifications. Making such techniques usable requires care: they must provide useful debugging information, be scalable, and enable automation. This dissertation presents automated analysis and synthesis techniques to ease the debugging of modular verification systems and allow easy access to constraint solvers from functional code. Further, it introduces machine learning based techniques to improve the scalability of off-the-shelf syntax-guided synthesis solvers and techniques to reduce the burden of network administrators writing and analyzing firewalls. We describe the design and implementationof a symbolic execution engine, G2, for non-strict functional languages such as Haskell. We extend G2 to both debug and automate the process of modular verification, and give Haskell programmers easy access to constraints solvers via a library named G2Q. Modular verifiers, such as LiquidHaskell, Dafny, and ESC/Java,allow programmers to write and prove specifications of their code. When a modular verifier fails to verify a program, it is not necessarily because of an actual bug in the program. This is because when verifying a function f, modular verifiers consider only the specification of a called function g, not the actual definition of g. Thus, a modular verifier may fail to prove a true specification of f if the specification of g is too weak. We present a technique, counterfactual symbolic execution, to aid in the debugging of modular verification failures. The approach uses symbolic execution to find concrete counterexamples, in the case of an actual inconsistency between a program and a specification; and abstract counterexamples, in the case that a function specification is too weak. Further, a counterexample-guided inductive synthesis (CEGIS) loop based technique is introduced to fully automate the process of modular verification, by using found counterexamples to automatically infer needed function specifications. The counterfactual symbolic execution and automated specification inference techniques are implemented in G2, and evaluated on existing LiquidHaskell errors and programs. We also leveraged G2 to build a library, G2Q, which allows writing constraint solving problemsdirectly as Haskell code. Users of G2Q can embed specially marked Haskell constraints (Boolean expressions) into their normal Haskell code, while marking some of the variables in the constraint as symbolic. Then, at runtime, G2Q automatically derives values for the symbolic variables that satisfy the constraint, and returns those values to the outside code. Unlike other constraint solving solutions, such as directly calling an SMT solver, G2Q uses symbolic execution to unroll recursive function definitions, and guarantees that the use of G2Q constraints will preserve type correctness. We further consider the problem of synthesizing functions viaa class of tools known as syntax-guided synthesis (SyGuS) solvers. We introduce a machine learning based technique to preprocess SyGuS problems, and reduce the space that the solver must search for a solution in. We demonstrate that the technique speeds up an existing SyGuS solver, CVC4, on a set of SyGuS solver benchmarks. Finally, we describe techniques to ease analysis and repair of firewalls.Firewalls are widely deployed to manage network security. However, firewall systems provide only a primitive interface, in which the specification is given as an ordered list of rules. This makes it hard to manually track and maintain the behavior of a firewall. We introduce a formal semantics for iptables firewall rules via a translation to first-order logic with uninterpreted functions and linear integer arithmetic, which allows encoding of firewalls into a decidable logic. We then describe techniques to automate the analysis and repair of firewalls using SMT solvers, based on user provided specifications of the desired behavior. We evaluate this approach with real world case studies collected from StackOverflow users

    Cross-layer latency-aware and -predictable data communication

    Get PDF
    Cyber-physical systems are making their way into more aspects of everyday life. These systems are increasingly distributed and hence require networked communication to coordinatively fulfil control tasks. Providing this in a robust and resilient manner demands for latency-awareness and -predictability at all layers of the communication and computation stack. This thesis addresses how these two latency-related properties can be implemented at the transport layer to serve control applications in ways that traditional approaches such as TCP or RTP cannot. Thereto, the Predictably Reliable Real-time Transport (PRRT) protocol is presented, including its unique features (e.g. partially reliable, ordered, in-time delivery, and latency-avoiding congestion control) and unconventional APIs. This protocol has been intensively evaluated using the X-Lap toolkit that has been specifically developed to support protocol designers in improving latency, timing, and energy characteristics of protocols in a cross-layer, intra-host fashion. PRRT effectively circumvents latency-inducing bufferbloat using X-Pace, an implementation of the cross-layer pacing approach presented in this thesis. This is shown using experimental evaluations on real Internet paths. Apart from PRRT, this thesis presents means to make TCP-based transport aware of individual link latencies and increases the predictability of the end-to-end delays using Transparent Transmission Segmentation.Cyber-physikalische Systeme werden immer relevanter für viele Aspekte des Alltages. Sie sind zunehmend verteilt und benötigen daher Netzwerktechnik zur koordinierten Erfüllung von Regelungsaufgaben. Um dies auf eine robuste und zuverlässige Art zu tun, ist Latenz-Bewusstsein und -Prädizierbarkeit auf allen Ebenen der Informations- und Kommunikationstechnik nötig. Diese Dissertation beschäftigt sich mit der Implementierung dieser zwei Latenz-Eigenschaften auf der Transport-Schicht, sodass Regelungsanwendungen deutlich besser unterstützt werden als es traditionelle Ansätze, wie TCP oder RTP, können. Hierzu wird das PRRT-Protokoll vorgestellt, inklusive seiner besonderen Eigenschaften (z.B. partiell zuverlässige, geordnete, rechtzeitige Auslieferung sowie Latenz-vermeidende Staukontrolle) und unkonventioneller API. Das Protokoll wird mit Hilfe von X-Lap evaluiert, welches speziell dafür entwickelt wurde Protokoll-Designer dabei zu unterstützen die Latenz-, Timing- und Energie-Eigenschaften von Protokollen zu verbessern. PRRT vermeidet Latenz-verursachenden Bufferbloat mit Hilfe von X-Pace, einer Cross-Layer Pacing Implementierung, die in dieser Arbeit präsentiert und mit Experimenten auf realen Internet-Pfaden evaluiert wird. Neben PRRT behandelt diese Arbeit transparente Übertragungssegmentierung, welche dazu dient dem TCP-basierten Transport individuelle Link-Latenzen bewusst zu machen und so die Vorhersagbarkeit der Ende-zu-Ende Latenz zu erhöhen

    Techniques for the Analysis of Modern Web Page Traffic using Anonymized TCP/IP Headers

    Get PDF
    Analysis of traces of network traffic is a methodology that has been widely adopted for studying the Web for several decades. However, due to recent privacy legislation and increasing adoption of traffic encryption, often only anonymized TCP/IP headers are accessible in traffic traces. For traffic traces to remain useful for analysis, techniques must be developed to glean insight using this limited header information. This dissertation evaluates approaches for classifying individual web page downloads — referred to as web page classification — when only anonymized TCP/IP headers are available. The context in which web page classification is defined and evaluated in this dissertation is different from prior traffic classification methods in three ways. First, the impact of diversity in client platforms (browsers, operating systems, device type, and vantage point) on network traffic is explicitly considered. Second, the challenge of overlapping traffic from multiple web pages is explicitly considered and demultiplexing approaches are evaluated (web page segmentation). And lastly, unlike prior work on traffic classification, four orthogonal labeling schemes are considered (genre-based, device-based, navigation-based, and video streaming-based) — these are of value in several web-related applications, including privacy analysis, user behavior modeling, traffic forecasting, and potentially behavioral ad-targeting. We conduct evaluations using large collections of both synthetically generated data, as well as browsing data from real users. Our analysis shows that the client platform choice has a statistically significant impact on web traffic. It also shows that change point detection methods, a new class of segmentation approach, outperform existing idle time-based methods. Overall, this work establishes that web page classification performance can be improved by: (i) incorporating client platform differences in the feature selection and training methodology, and (ii) utilizing better performing web page segmentation approaches. This research increases the overall awareness on the challenges associated with the analysis of modern web traffic. It shows and advocates for considering real-world factors, such as client platform diversity and overlapping traffic from multiple streams, when developing and evaluating traffic analysis techniques.Doctor of Philosoph

    Investigating Emerging Security Threats in Clouds and Data Centers

    Get PDF
    Data centers have been growing rapidly in recent years to meet the surging demand of cloud services. However, the expanding scale of a data center also brings new security threats. This dissertation studies emerging security issues in clouds and data centers from different aspects, including low-level cooling infrastructures and different virtualization techniques such as container and virtual machine (VM). We first unveil a new vulnerability called reduced cooling redundancy that might be exploited to launch thermal attacks, resulting in severely worsened thermal conditions in a data center. Such a vulnerability is caused by the wide adoption of aggressive cooling energy saving policies. We conduct thermal measurements and uncover effective thermal attack vectors at the server, rack, and data center levels. We also present damage assessments of thermal attacks. Our results demonstrate that thermal attacks can negatively impact the thermal conditions and reliability of victim servers, significantly raise the cooling cost, and even lead to cooling failures. Finally, we propose effective defenses to mitigate thermal attacks. We then perform a systematic study to understand the security implications of the information leakage in multi-tenancy container cloud services. Due to the incomplete implementation of system resource isolation mechanisms in the Linux kernel, a spectrum of system-wide host information is exposed to the containers, including host-system state information and individual process execution information. By exploiting such leaked host information, malicious adversaries can easily launch advanced attacks that can seriously affect the reliability of cloud services. Additionally, we discuss the root causes of the containers\u27 information leakage and propose a two-stage defense approach. The experimental results show that our defense is effective and incurs trivial performance overhead. Finally, we investigate security issues in the existing VM live migration approaches, especially the post-copy approach. While the entire live migration process relies upon reliable TCP connectivity for the transfer of the VM state, we demonstrate that the loss of TCP reliability leads to VM live migration failure. By intentionally aborting the TCP connection, attackers can cause unrecoverable memory inconsistency for post-copy, significantly increase service downtime, and degrade the running VM\u27s performance. From the offensive side, we present detailed techniques to reset the migration connection under heavy networking traffic. From the defensive side, we also propose effective protection to secure the live migration procedure
    corecore