3,430 research outputs found

    Data-driven design of intelligent wireless networks: an overview and tutorial

    Get PDF
    Data science or "data-driven research" is a research approach that uses real-life data to gain insight about the behavior of systems. It enables the analysis of small, simple as well as large and more complex systems in order to assess whether they function according to the intended design and as seen in simulation. Data science approaches have been successfully applied to analyze networked interactions in several research areas such as large-scale social networks, advanced business and healthcare processes. Wireless networks can exhibit unpredictable interactions between algorithms from multiple protocol layers, interactions between multiple devices, and hardware specific influences. These interactions can lead to a difference between real-world functioning and design time functioning. Data science methods can help to detect the actual behavior and possibly help to correct it. Data science is increasingly used in wireless research. To support data-driven research in wireless networks, this paper illustrates the step-by-step methodology that has to be applied to extract knowledge from raw data traces. To this end, the paper (i) clarifies when, why and how to use data science in wireless network research; (ii) provides a generic framework for applying data science in wireless networks; (iii) gives an overview of existing research papers that utilized data science approaches in wireless networks; (iv) illustrates the overall knowledge discovery process through an extensive example in which device types are identified based on their traffic patterns; (v) provides the reader the necessary datasets and scripts to go through the tutorial steps themselves

    An Overview on Application of Machine Learning Techniques in Optical Networks

    Get PDF
    Today's telecommunication networks have become sources of enormous amounts of widely heterogeneous data. This information can be retrieved from network traffic traces, network alarms, signal quality indicators, users' behavioral data, etc. Advanced mathematical tools are required to extract meaningful information from these data and take decisions pertaining to the proper functioning of the networks from the network-generated data. Among these mathematical tools, Machine Learning (ML) is regarded as one of the most promising methodological approaches to perform network-data analysis and enable automated network self-configuration and fault management. The adoption of ML techniques in the field of optical communication networks is motivated by the unprecedented growth of network complexity faced by optical networks in the last few years. Such complexity increase is due to the introduction of a huge number of adjustable and interdependent system parameters (e.g., routing configurations, modulation format, symbol rate, coding schemes, etc.) that are enabled by the usage of coherent transmission/reception technologies, advanced digital signal processing and compensation of nonlinear effects in optical fiber propagation. In this paper we provide an overview of the application of ML to optical communications and networking. We classify and survey relevant literature dealing with the topic, and we also provide an introductory tutorial on ML for researchers and practitioners interested in this field. Although a good number of research papers have recently appeared, the application of ML to optical networks is still in its infancy: to stimulate further work in this area, we conclude the paper proposing new possible research directions

    Optimizing E-Commerce Product Classification Using Transfer Learning

    Get PDF
    The global e-commerce market is snowballing at a rate of 23% per year. In 2017, retail e-commerce users were 1.66 billion and sales worldwide amounted to 2.3 trillion US dollars, and e-retail revenues are projected to grow to 4.88 trillion USD in 2021. With the immense popularity that e-commerce has gained over past few years comes the responsibility to deliver relevant results to provide rich user experience. In order to do this, it is essential that the products on the ecommerce website be organized correctly into their respective categories. Misclassification of products leads to irrelevant results for users which not just reflects badly on the website, it could also lead to lost customers. With ecommerce sites nowadays providing their portal as a platform for third party merchants to sell their products as well, maintaining a consistency in product categorization becomes difficult. Therefore, automating this process could be of great utilization. This task of automation done on the basis of text could lead to discrepancies since the website itself, its various merchants, and users, all could use different terminologies for a product and its category. Thus, using images becomes a plausible solution for this problem. Dealing with images can best be done using deep learning in the form of convolutional neural networks. This is a computationally expensive task, and in order to keep the accuracy of a traditional convolutional neural network while reducing the hours it takes for the model to train, this project aims at using a technique called transfer learning. Transfer learning refers to sharing the knowledge gained from one task for another where new model does not need to be trained from scratch in order to reduce the time it takes for training. This project aims at using various product images belonging to five categories from an ecommerce platform and developing an algorithm that can accurately classify products in their respective categories while taking as less time as possible. The goal is to first test the performance of transfer learning against traditional convolutional networks. Then the next step is to apply transfer learning to the downloaded dataset and assess its performance on the accuracy and time taken to classify test data that the model has never seen before

    Language as a latent sequence: Deep latent variable models for semi-supervised paraphrase generation

    Get PDF
    This paper explores deep latent variable models for semi-supervised paraphrase generation, where the missing target pair for unlabelled data is modelled as a latent paraphrase sequence. We present a novel unsupervised model named variational sequence auto-encoding reconstruction (VSAR), which performs latent sequence inference given an observed text. To leverage information from text pairs, we additionally introduce a novel supervised model we call dual directional learning (DDL), which is designed to integrate with our proposed VSAR model. Combining VSAR with DDL (DDL+VSAR) enables us to conduct semi-supervised learning. Still, the combined model suffers from a cold-start problem. To further combat this issue, we propose an improved weight initialisation solution, leading to a novel two-stage training scheme we call knowledge-reinforced-learning (KRL). Our empirical evaluations suggest that the combined model yields competitive performance against the state-of-the-art supervised baselines on complete data. Furthermore, in scenarios where only a fraction of the labelled pairs are available, our combined model consistently outperforms the strong supervised model baseline (DDL) by a significant margin ( ; Wilcoxon test). Our code is publicly available at https://github.com/jialin-yu/latent-sequence-paraphrase

    Reducing the Burden of Aerial Image Labelling Through Human-in-the-Loop Machine Learning Methods

    Get PDF
    This dissertation presents an introduction to human-in-the-loop deep learning methods for remote sensing applications. It is motivated by the need to decrease the time spent by volunteers on semantic segmentation of remote sensing imagery. We look at two human-in-the-loop approaches of speeding up the labelling of the remote sensing data: interactive segmentation and active learning. We develop these methods specifically in response to the needs of the disaster relief organisations who require accurately labelled maps of disaster-stricken regions quickly, in order to respond to the needs of the affected communities. To begin, we survey the current approaches used within the field. We analyse the shortcomings of these models which include outputs ill-suited for uploading to mapping databases, and an inability to label new regions well, when the new regions differ from the regions trained on. The methods developed then look at addressing these shortcomings. We first develop an interactive segmentation algorithm. Interactive segmentation aims to segment objects with a supervisory signal from a user to assist the model. Work within interactive segmentation has focused largely on segmenting one or few objects within an image. We make a few adaptions to allow an existing method to scale to remote sensing applications where there are tens of objects within a single image that needs to be segmented. We show a quantitative improvements of up to 18% in mean intersection over union, as well as qualitative improvements. The algorithm works well when labelling new regions, and the qualitative improvements show outputs more suitable for uploading to mapping databases. We then investigate active learning in the context of remote sensing. Active learning looks at reducing the number of labelled samples required by a model to achieve an acceptable performance level. Within the context of deep learning, the utility of the various active learning strategies developed is uncertain, with conflicting results within the literature. We evaluate and compare a variety of sample acquisition strategies on the semantic segmentation tasks in scenarios relevant to disaster relief mapping. Our results show that all active learning strategies evaluated provide minimal performance increases over a simple random sample acquisition strategy. However, we present analysis of the results illustrating how the various strategies work and intuition of when certain active learning strategies might be preferred. This analysis could be used to inform future research. We conclude by providing examples of the synergies of these two approaches, and indicate how this work, on reducing the burden of aerial image labelling for the disaster relief mapping community, can be further extended
    • …
    corecore