1,305 research outputs found

    Risk Evaluation of Human-Care Robots

    Get PDF

    模倣学習を用いた両腕ロボット着衣介助システムのデザインと開発

    Get PDF
    The recent demographic trend across developed nations shows a dramatic increase in the aging population and fallen fertility rates. With the aging population, the number of elderly who need support for their Activities of Daily Living (ADL) such as dressing, is growing. The use of caregivers is universal for the dressing task due to the unavailability of any effective assistive technology. Unfortunately, across the globe, many nations are suffering from a severe shortage of caregivers. Hence, the demand for service robots to assist with the dressing task is increasing rapidly. Robotic Clothing Assistance is a challenging task. The robot has to deal with the following two complex tasks simultaneously, (a) non-rigid and highly flexible cloth manipulation, and (b) safe human-robot interaction while assisting a human whose posture may vary during the task. On the other hand, humans can deal with these tasks rather easily. In this thesis, a framework for Robotic Clothing Assistance by imitation learning from a human demonstration to a compliant dual-arm robot is proposed. In this framework, the dressing task is divided into the following three phases, (a) reaching phase, (b) arm dressing phase, and (c) body dressing phase. The arm dressing phase is treated as a global trajectory modification and implemented by applying the Dynamic Movement Primitives (DMP). The body dressing phase is represented as a local trajectory modification and executed by employing the Bayesian Gaussian Process Latent Variable Model (BGPLVM). It is demonstrated that the proposed framework developed towards assisting the elderly is generalizable to various people and successfully performs a sleeveless T-shirt dressing task. Furthermore, in this thesis, various limitations and improvements to the framework are discussed. These improvements include the followings (a) evaluation of Robotic Clothing Assistance, (b) automated wheelchair movement, and (c) incremental learning to perform Robotic Clothing Assistance. Evaluation is necessary for our framework. To make it accessible in care facilities, systematic assessment of the performance, and the devices’ effects on the care receivers and caregivers is required. Therefore, a robotic simulator that mimicks human postures is used as a subject to evaluate the dressing task. The proposed framework involves a wheeled chair’s manually coordinated movement, which is difficult to perform for the elderly as it requires pushing the chair by himself. To this end, using an electric wheelchair, an approach for wheelchair and robot collaboration is presented. Finally, to incorporate different human body dimensions, Robotic Clothing Assistance is formulated as an incremental imitation learning problem. The proposed formulation enables learning and adjusting the behavior incrementally whenever a new demonstration is performed. When found inappropriate, the planned trajectory is modified through physical Human-Robot Interaction (HRI) during the execution. This research work is exhibited to the public at various events such as the International Robot Exhibition (iREX) 2017 at Tokyo (Japan), the West Japan General Exhibition Center Annex 2018 at Kokura (Japan), and iREX 2019 at Tokyo (Japan).九州工業大学博士学位論文 学位記番号:生工博甲第384号 学位授与年月日:令和2年9月25日1 Introduction|2 Related Work|3 Imitation Learning|4 Experimental System|5 Proposed Framework|6 Whole-Body Robotic Simulator|7 Electric Wheelchair-Robot Collaboration|8 Incremental Imitation Learning|9 Conclusion九州工業大学令和2年

    Becoming Human with Humanoid

    Get PDF
    Nowadays, our expectations of robots have been significantly increases. The robot, which was initially only doing simple jobs, is now expected to be smarter and more dynamic. People want a robot that resembles a human (humanoid) has and has emotional intelligence that can perform action-reaction interactions. This book consists of two sections. The first section focuses on emotional intelligence, while the second section discusses the control of robotics. The contents of the book reveal the outcomes of research conducted by scholars in robotics fields to accommodate needs of society and industry

    Telenursing RoboPuppet

    Get PDF
    The goal of this project is to improve the TRINA nursing robots ability to perform common medical tasks by designing an improved input device. The selected solution was to create a RoboPuppet, a DH parameter scale model of Baxters arms with angle sensors. A RoboPuppet allows for direct manipulation of Baxters joint space with one-to-one correspondence. Actuators were integrated to provide the opportunity for gravity compensation and haptic feedback. The puppet was successful in manipulating Baxters arms smoothly and precisely

    Telenursing RoboPuppet

    Get PDF
    The goal of this project is to improve the TRINA nursing robots ability to perform common medical tasks by designing an improved input device. The selected solution was to create a RoboPuppet, a DH parameter scale model of Baxters arms with angle sensors. A RoboPuppet allows for direct manipulation of Baxters joint space with one-to-one correspondence. Actuators were integrated to provide the opportunity for gravity compensation and haptic feedback. The puppet was successful in manipulating Baxters arms smoothly and precisely

    Robot Games for Elderly:A Case-Based Approach

    Get PDF

    Towards a Legal end Ethical Framework for Personal Care Robots. Analysis of Person Carrier, Physical Assistant and Mobile Servant Robots.

    Get PDF
    Technology is rapidly developing, and regulators and robot creators inevitably have to come to terms with new and unexpected scenarios. A thorough analysis of this new and continuosuly evolving reality could be useful to better understand the current situation and pave the way to the future creation of a legal and ethical framework. This is clearly a wide and complex goal, considering the variety of new technologies available today and those under development. Therefore, this thesis focuses on the evaluation of the impacts of personal care robots. In particular, it analyzes how roboticists adjust their creations to the existing regulatory framework for legal compliance purposes. By carrying out an impact assessment analysis, existing regulatory gaps and lack of regulatory clarity can be highlighted. These gaps should of course be considered further on by lawmakers for a future legal framework for personal care robot. This assessment should be made first against regulations. If the creators of the robot do not encounter any limitations, they can then proceed with its development. On the contrary, if there are some limitations, robot creators will either (1) adjust the robot to comply with the existing regulatory framework; (2) start a negotiation with the regulators to change the law; or (3) carry out the original plan and risk to be non-compliant. The regulator can discuss existing (or lacking) regulations with robot developers and give a legal response accordingly. In an ideal world, robots are clear of impacts and therefore threats can be responded in terms of prevention and opportunities in form of facilitation. In reality, the impacts of robots are often uncertain and less clear, especially when they are inserted in care applications. Therefore, regulators will have to address uncertain risks, ambiguous impacts and yet unkown effects

    An interactive interface for nursing robots.

    Get PDF
    Physical Human-Robot Interaction (pHRI) is inevitable for a human user while working with assistive robots. There are various aspects of pHRI, such as choosing the interface, type of control schemes implemented and the modes of interaction. The research work presented in this thesis concentrates on a health-care assistive robot called Adaptive Robot Nursing Assistant (ARNA). An assistive robot in a health-care environment has to be able to perform routine tasks and be aware of the surrounding environment at the same time. In order to operate the robot, a teleoperation based interaction would be tedious for some patients as it would require a high level of concentration and can cause cognitive fatigue. It would also require a learning curve for the user in order to teleoperate the robot efficiently. The research work involves the development of a proposed Human-Machine Interface (HMI) framework which integrates the decision-making module, interaction module, and a tablet interface module. The HMI framework integrates a traded control based interaction which allows the robot to take decisions on planning and executing a task while the user only has to specify the task through a tablet interface. According to the preliminary experiments conducted as a part of this thesis, the traded control based approach allows a novice user to operate the robot with the same efficiency as an expert user. Past researchers have shown that during a conversation with a speech interface, a user would feel disengaged if the answers received from the interface are not in the context of the conversation. The research work in this thesis explores the different possibilities of implementing a speech interface that would be able to reply to any conversational queries from the user. A speech interface was developed by creating a semantic space out of Wikipedia database using Latent Semantic Analysis (LSA). This allowed the speech interface to have a wide knowledge-base and be able to maintain a conversation in the same context as intended by the user. This interface was developed as a web-service and was deployed on two different robots to exhibit its portability and the ease of implementation with any other robot. In the work presented, a tablet application was developed which integrates speech interface and an onscreen button interface to execute tasks through ARNA robot. This tablet interface application can access video feed and sensor data from robots, assist the user with decision making during pick and place operations, monitor the user health over time, and provide conversational dialogue during sitting sessions. In this thesis, we present the software and hardware framework that enable a patient sitter HMI, and together with experimental results with a small number of users that demonstrate that the concept is sound and scalable
    corecore