57 research outputs found

    INDIVIDUALIZED DIFFEOMORPHIC MAPPING FOR STROKE PATIENTS WITH LARGE CORTICAL INFARCTS

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Construction of 4D high-definition cortical surface atlases of infants: Methods and applications

    Get PDF
    In neuroimaging, cortical surface atlases play a fundamental role for spatial normalization, analysis, visualization, and comparison of results across individuals and different studies. However, existing cortical surface atlases created for adults are not suitable for infant brains during the first two years of life, which is the most dynamic period of postnatal structural and functional development of the highly-folded cerebral cortex. Therefore, spatiotemporal cortical surface atlases for infant brains are highly desired yet still lacking for accurate mapping of early dynamic brain development. To bridge this significant gap, leveraging our infant-dedicated computational pipeline for cortical surface-based analysis and the unique longitudinal infant MRI dataset acquired in our research center, in this paper, we construct the first spatiotemporal (4D) high-definition cortical surface atlases for the dynamic developing infant cortical structures at 7 time points, including 1, 3, 6, 9, 12, 18, and 24 months of age, based on 202 serial MRI scans from 35 healthy infants. For this purpose, we develop a novel method to ensure the longitudinal consistency and unbiasedness to any specific subject and age in our 4D infant cortical surface atlases. Specifically, we first compute the within-subject mean cortical folding by unbiased groupwise registration of longitudinal cortical surfaces of each infant. Then we establish longitudinally-consistent and unbiased inter-subject cortical correspondences by groupwise registration of the geometric features of within-subject mean cortical folding across all infants. Our 4D surface atlases capture both longitudinally-consistent dynamic mean shape changes and the individual variability of cortical folding during early brain development. Experimental results on two independent infant MRI datasets show that using our 4D infant cortical surface atlases as templates leads to significantly improved accuracy for spatial normalization of cortical surfaces across infant individuals, in comparison to the infant surface atlases constructed without longitudinal consistency and also the FreeSurfer adult surface atlas. Moreover, based on our 4D infant surface atlases, for the first time, we reveal the spatially-detailed, region-specific correlation patterns of the dynamic cortical developmental trajectories between different cortical regions during early brain development

    MULTISCALE KERNELS FOR DIFFEOMORPHIC BRAIN IMAGE AND SURFACE MATCHING

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Surface-Based tools for Characterizing the Human Brain Cortical Morphology

    Get PDF
    Tesis por compendio de publicacionesThe cortex of the human brain is highly convoluted. These characteristic convolutions present advantages over lissencephalic brains. For instance, gyrification allows an expansion of cortical surface area without significantly increasing the cranial volume, thus facilitating the pass of the head through the birth channel. Studying the human brain’s cortical morphology and the processes leading to the cortical folds has been critical for an increased understanding of the pathological processes driving psychiatric disorders such as schizophrenia, bipolar disorders, autism, or major depression. Furthermore, charting the normal developmental changes in cortical morphology during adolescence or aging can be of great importance for detecting deviances that may be precursors for pathology. However, the exact mechanisms that push cortical folding remain largely unknown. The accurate characterization of the neurodevelopment processes is challenging. Multiple mechanisms co-occur at a molecular or cellular level and can only be studied through the analysis of ex-vivo samples, usually of animal models. Magnetic Resonance Imaging can partially fill the breach, allowing the portrayal of the macroscopic processes surfacing on in-vivo samples. Different metrics have been defined to measure cortical structure to describe the brain’s morphological changes and infer the associated microstructural events. Metrics such as cortical thickness, surface area, or cortical volume help establish a relation between the measured voxels on a magnetic resonance image and the underlying biological processes. However, the existing methods present limitations or room for improvement. Methods extracting the lines representing the gyral and sulcal morphology tend to over- or underestimate the total length. These lines can provide important information about how sulcal and gyral regions function differently due to their distinctive ontogenesis. Nevertheless, some methods label every small fold on the cortical surface as a sulcal fundus, thus losing the perspective of lines that travel through the deeper zones of a sulcal basin. On the other hand, some methods are too restrictive, labeling sulcal fundi only for a bunch of primary folds. To overcome this issue, we have proposed a Laplacian-collapse-based algorithm that can delineate the lines traversing the top regions of the gyri and the fundi of the sulci avoiding anastomotic sulci. For this, the cortex, represented as a 3D surface, is segmented into gyral and sulcal surfaces attending to the curvature and depth at every point of the mesh. Each resulting surface is spatially filtered, smoothing the boundaries. Then, a Laplacian-collapse-based algorithm is applied to obtain a thinned representation of the morphology of each structure. These thin curves are processed to detect where the extremities or endpoints lie. Finally, sulcal fundi and gyral crown lines are obtained by eroding the surfaces while preserving the structure topology and connectivity between the endpoints. The assessment of the presented algorithm showed that the labeled sulcal lines were close to the proposed ground truth length values while crossing through the deeper (and more curved) regions. The tool also obtained reproducibility scores better or similar to those of previous algorithms. A second limitation of the existing metrics concerns the measurement of sulcal width. This metric, understood as the physical distance between the points on opposite sulcal banks, can come in handy in detecting cortical flattening or complementing the information provided by cortical thickness, gyrification index, or such features. Nevertheless, existing methods only provided averaged measurements for different predefined sulcal regions, greatly restricting the possibilities of sulcal width and ignoring the intra-region variability. Regarding this, we developed a method that estimates the distance from each sulcal point in the cortex to its corresponding opposite, thus providing a per-vertex map of the physical sulcal distances. For this, the cortical surface is sampled at different depth levels, detecting the points where the sulcal banks change. The points corresponding to each sulcal wall are matched with the closest point on a different one. The distance between those points is the sulcal width. The algorithm was validated against a simulated sulcus that resembles a simple fold. Then the tool was used on a real dataset and compared against two widely-used sulcal width estimation methods, averaging the proposed algorithm’s values into the same region definition those reference tools use. The resulting values were similar for the proposed and the reference methods, thus demonstrating the algorithm’s accuracy. Finally, both algorithms were tested on a real aging population dataset to prove the methods’ potential in a use-case scenario. The main idea was to elucidate fine-grained morphological changes in the human cortex with aging by conducting three analyses: a comparison of the age-dependencies of cortical thickness in gyral and sulcal lines, an analysis of how the sulcal and gyral length changes with age, and a vertex-wise study of sulcal width and cortical thickness. These analyses showed a general flattening of the cortex with aging, with interesting findings such as a differential age-dependency of thickness thinning in the sulcal and gyral regions. By demonstrating that our method can detect this difference, our results can pave the way for future in vivo studies focusing on macro- and microscopic changes specific to gyri or sulci. Our method can generate new brain-based biomarkers specific to sulci and gyri, and these can be used on large samples to establish normative models to which patients can be compared. In parallel, the vertex-wise analyses show that sulcal width is very sensitive to changes during aging, independent of cortical thickness. This corroborates the concept of sulcal width as a metric that explains, in the least, the unique variance of morphology not fully captured by existing metrics. Our method allows for sulcal width vertex-wise analyses that were not possible previously, potentially changing our understanding of how changes in sulcal width shape cortical morphology. In conclusion, this thesis presents two new tools, open source and publicly available, for estimating cortical surface-based morphometrics. The methods have been validated and assessed against existing algorithms. They have also been tested on a real dataset, providing new, exciting insights into cortical morphology and showing their potential for defining innovative biomarkers.Programa de Doctorado en Ciencia y Tecnología Biomédica por la Universidad Carlos III de MadridPresidente: Juan Domingo Gispert López.- Secretario: Norberto Malpica González de Vega.- Vocal: Gemma Cristina Monté Rubi

    Geodesic Active Fields:A Geometric Framework for Image Registration

    Get PDF
    Image registration is the concept of mapping homologous points in a pair of images. In other words, one is looking for an underlying deformation field that matches one image to a target image. The spectrum of applications of image registration is extremely large: It ranges from bio-medical imaging and computer vision, to remote sensing or geographic information systems, and even involves consumer electronics. Mathematically, image registration is an inverse problem that is ill-posed, which means that the exact solution might not exist or not be unique. In order to render the problem tractable, it is usual to write the problem as an energy minimization, and to introduce additional regularity constraints on the unknown data. In the case of image registration, one often minimizes an image mismatch energy, and adds an additive penalty on the deformation field regularity as smoothness prior. Here, we focus on the registration of the human cerebral cortex. Precise cortical registration is required, for example, in statistical group studies in functional MR imaging, or in the analysis of brain connectivity. In particular, we work with spherical inflations of the extracted hemispherical surface and associated features, such as cortical mean curvature. Spatial mapping between cortical surfaces can then be achieved by registering the respective spherical feature maps. Despite the simplified spherical geometry, inter-subject registration remains a challenging task, mainly due to the complexity and inter-subject variability of the involved brain structures. In this thesis, we therefore present a registration scheme, which takes the peculiarities of the spherical feature maps into particular consideration. First, we realize that we need an appropriate hierarchical representation, so as to coarsely align based on the important structures with greater inter-subject stability, before taking smaller and more variable details into account. Based on arguments from brain morphogenesis, we propose an anisotropic scale-space of mean-curvature maps, built around the Beltrami framework. Second, inspired by concepts from vision-related elements of psycho-physical Gestalt theory, we hypothesize that anisotropic Beltrami regularization better suits the requirements of image registration regularization, compared to traditional Gaussian filtering. Different objects in an image should be allowed to move separately, and regularization should be limited to within the individual Gestalts. We render the regularization feature-preserving by limiting diffusion across edges in the deformation field, which is in clear contrast to the indifferent linear smoothing. We do so by embedding the deformation field as a manifold in higher-dimensional space, and minimize the associated Beltrami energy which represents the hyperarea of this embedded manifold as measure of deformation field regularity. Further, instead of simply adding this regularity penalty to the image mismatch in lieu of the standard penalty, we propose to incorporate the local image mismatch as weighting function into the Beltrami energy. The image registration problem is thus reformulated as a weighted minimal surface problem. This approach has several appealing aspects, including (1) invariance to re-parametrization and ability to work with images defined on non-flat, Riemannian domains (e.g., curved surfaces, scalespaces), and (2) intrinsic modulation of the local regularization strength as a function of the local image mismatch and/or noise level. On a side note, we show that the proposed scheme can easily keep up with recent trends in image registration towards using diffeomorphic and inverse consistent deformation models. The proposed registration scheme, called Geodesic Active Fields (GAF), is non-linear and non-convex. Therefore we propose an efficient optimization scheme, based on splitting. Data-mismatch and deformation field regularity are optimized over two different deformation fields, which are constrained to be equal. The constraint is addressed using an augmented Lagrangian scheme, and the resulting optimization problem is solved efficiently using alternate minimization of simpler sub-problems. In particular, we show that the proposed method can easily compete with state-of-the-art registration methods, such as Demons. Finally, we provide an implementation of the fast GAF method on the sphere, so as to register the triangulated cortical feature maps. We build an automatic parcellation algorithm for the human cerebral cortex, which combines the delineations available on a set of atlas brains in a Bayesian approach, so as to automatically delineate the corresponding regions on a subject brain given its feature map. In a leave-one-out cross-validation study on 39 brain surfaces with 35 manually delineated gyral regions, we show that the pairwise subject-atlas registration with the proposed spherical registration scheme significantly improves the individual alignment of cortical labels between subject and atlas brains, and, consequently, that the estimated automatic parcellations after label fusion are of better quality

    Examining the development of brain structure in utero with fetal MRI, acquired as part of the Developing Human Connectome Project

    Get PDF
    The human brain is an incredibly complex organ, and the study of it traverses many scales across space and time. The development of the brain is a protracted process that begins embryonically but continues into adulthood. Although neural circuits have the capacity to adapt and are modulated throughout life, the major structural foundations are laid in utero during the fetal period, through a series of rapid but precisely timed, dynamic processes. These include neuronal proliferation, migration, differentiation, axonal pathfinding, and myelination, to name a few. The fetal origins of disease hypothesis proposed that a variety of non-communicable diseases emerging in childhood and adulthood could be traced back to a series of risk factors effecting neurodevelopment in utero (Barker 1995). Since this publication, many studies have shown that the structural scaffolding of the brain is vulnerable to external environmental influences and the perinatal developmental window is a crucial determinant of neurological health later in life. However, there remain many fundamental gaps in our understanding of it. The study of human brain development is riddled with biophysical, ethical, and technical challenges. The Developing Human Connectome Project (dHCP) was designed to tackle these specific challenges and produce high quality open-access perinatal MRI data, to enable researchers to investigate normal and abnormal neurodevelopment (Edwards et al., 2022). This thesis will focus on investigating the diffusion-weighted and anatomical (T2) imaging data acquired in the fetal period, between the second to third trimester (22 – 37 gestational weeks). The limitations of fetal MR data are ill-defined due to a lack of literature and therefore this thesis aims to explore the data through a series of critical and strategic analysis approaches that are mindful of the biophysical challenges associated with fetal imaging. A variety of analysis approaches are optimised to quantify structural brain development in utero, exploring avenues to relate the changes in MR signal to possible neurobiological correlates. In doing so, the work in this thesis aims to improve mechanistic understanding about how the human brain develops in utero, providing the clinical and medical imaging community with a normative reference point. To this aim, this thesis investigates fetal neurodevelopment with advanced in utero MRI methods, with a particular emphasis on diffusion MRI. Initially, the first chapter outlines a descriptive, average trajectory of diffusion metrics in different white matter fiber bundles across the second to third trimester. This work identified unique polynomial trajectories in diffusion metrics that characterise white matter development (Wilson et al., 2021). Guided by previous literature on the sensitivity of DWI to cellular processes, I formulated a hypothesis about the biophysical correlates of diffusion signal components that might underpin this trend in transitioning microstructure. This hypothesis accounted for the high sensitivity of the diffusion signal to a multitude of simultaneously occurring processes, such as the dissipating radial glial scaffold, commencement of pre-myelination and arborization of dendritic trees. In the next chapter, the methods were adapted to address this hypothesis by introducing another dimension, and charting changes in diffusion properties along developing fiber pathways. With this approach it was possible to identify compartment-specific microstructural maturation, refining the spatial and temporal specificity (Wilson et al., 2023). The results reveal that the dynamic fluctuations in the components of the diffusion signal correlate with observations from previous histological work. Overall, this work allowed me to consolidate my interpretation of the changing diffusion signal from the first chapter. It also serves to improve understanding about how diffusion signal properties are affected by processes in transient compartments of the fetal brain. The third chapter of this thesis addresses the hypothesis that cortical gyrification is influenced by both underlying fiber connectivity and cytoarchitecture. Using the same fetal imaging dataset, I analyse the tissue microstructural change underlying the formation of cortical folds. I investigate correlations between macrostructural surface features (curvature, sulcal depth) and tissue microstructural measures (diffusion tensor metrics, and multi-shell multi-tissue decomposition) in the subplate and cortical plate across gestational age, exploring this relationship both at the population level and within subjects. This study provides empirical evidence to support the hypotheses that microstructural properties in the subplate and cortical plate are altered with the development of sulci. The final chapter explores the data without anatomical priors, using a data-driven method to extract components that represent coordinated structural maturation. This analysis aims to examine if brain regions with coherent patterns of growth over the fetal period converge on neonatal functional networks. I extract spatially independent features from the anatomical imaging data and quantify the spatial overlap with pre-defined neonatal resting state networks. I hypothesised that coherent spatial patterns of anatomical development over the fetal period would map onto the functional networks observed in the neonatal period. Overall, this thesis provides new insight about the developmental contrast over the second to third trimester of human development, and the biophysical correlates affecting T2 and diffusion MR signal. The results highlight the utility of fetal MRI to research critical mechanisms of structural brain maturation in utero, including white matter development and cortical gyrification, bridging scales from neurobiological processes to whole brain macrostructure. their gendered constructions relating to women

    Morphology And Mechanics Of Cortical Folding Associated With Auditory Deprivation

    Get PDF
    Hearing loss is increasingly becoming a common disabling condition that affects the global population. Functional and structural changes occur in the developing auditory cortex after the onset of auditory deprivation. This study aims at measuring and modeling these changes, which can help understand the pathology of hearing loss and support research on treatment. Specifically, it describes a pipeline of automatically extracting inner and outer cortical surfaces from MRI images and measuring morphological metrics. Then, a two-component finite element mechanical model mimicking gray matter and white matter is used to investigate the causes of measured structural differences between cats with normal hearing and hearing loss. Mechanical parameters, such as shear and bulk modulus, are varied with a view to studying their influence on cortical folding patterns. Compared to hearing cats, cats with hearing loss have decreased cortical curvature and folding index, and increased thickness. By varying the shear modulus and bulk modulus of the gray and white matter at different locations, the mechanical model reveals distinct stable folding patterns. Specific combinations of parameters and locations lead to changes in curvature, folding index, and thickness. The methods used in this study can also be extended to examine cortical morphological characteristics associated with other abnormalities in the developing brain

    Diffeomorphic Metric Mapping and Probabilistic Atlas Generation of Hybrid Diffusion Imaging based on BFOR Signal Basis

    Full text link
    We propose a large deformation diffeomorphic metric mapping algorithm to align multiple b-value diffusion weighted imaging (mDWI) data, specifically acquired via hybrid diffusion imaging (HYDI), denoted as LDDMM-HYDI. We then propose a Bayesian model for estimating the white matter atlas from HYDIs. We adopt the work given in Hosseinbor et al. (2012) and represent the q-space diffusion signal with the Bessel Fourier orientation reconstruction (BFOR) signal basis. The BFOR framework provides the representation of mDWI in the q-space and thus reduces memory requirement. In addition, since the BFOR signal basis is orthonormal, the L2 norm that quantifies the differences in the q-space signals of any two mDWI datasets can be easily computed as the sum of the squared differences in the BFOR expansion coefficients. In this work, we show that the reorientation of the qq-space signal due to spatial transformation can be easily defined on the BFOR signal basis. We incorporate the BFOR signal basis into the LDDMM framework and derive the gradient descent algorithm for LDDMM-HYDI with explicit orientation optimization. Additionally, we extend the previous Bayesian atlas estimation framework for scalar-valued images to HYDIs and derive the expectation-maximization algorithm for solving the HYDI atlas estimation problem. Using real HYDI datasets, we show the Bayesian model generates the white matter atlas with anatomical details. Moreover, we show that it is important to consider the variation of mDWI reorientation due to a small change in diffeomorphic transformation in the LDDMM-HYDI optimization and to incorporate the full information of HYDI for aligning mDWI
    corecore