1,963 research outputs found

    Nanoantennas for visible and infrared radiation

    Full text link
    Nanoantennas for visible and infrared radiation can strongly enhance the interaction of light with nanoscale matter by their ability to efficiently link propagating and spatially localized optical fields. This ability unlocks an enormous potential for applications ranging from nanoscale optical microscopy and spectroscopy over solar energy conversion, integrated optical nanocircuitry, opto-electronics and density-ofstates engineering to ultra-sensing as well as enhancement of optical nonlinearities. Here we review the current understanding of optical antennas based on the background of both well-developed radiowave antenna engineering and the emerging field of plasmonics. In particular, we address the plasmonic behavior that emerges due to the very high optical frequencies involved and the limitations in the choice of antenna materials and geometrical parameters imposed by nanofabrication. Finally, we give a brief account of the current status of the field and the major established and emerging lines of investigation in this vivid area of research.Comment: Review article with 76 pages, 21 figure

    Laser processing of materials

    Get PDF
    Light amplification by stimulated emission of radiation (laser) is a coherent and monochromatic beam of electromagnetic radiation that can propagate in a straight line with negligible divergence and occur in a wide range of wave-length, energy/power and beam-modes/configurations. As a result, lasers find wide applications in the mundane to the most sophisticated devices, in commercial to purely scientific purposes, and in life-saving as well as life-threatening causes. In the present contribution, we provide an overview of the application of lasers for material processing. The processes covered are broadly divided into four major categories; namely, laser-assisted forming, joining, machining and surface engineering. Apart from briefly introducing the fundamentals of these operations, we present an updated review of the relevant literature to highlight the recent advances and open questions. We begin our discussion with the general applications of lasers, fundamentals of laser-matter interaction and classification of laser material processing. A major part of the discussion focuses on laser surface engineering that has attracted a good deal of attention from the scientific community for its technological significance and scientific challenges. In this regard, a special mention is made about laser surface vitrification or amorphization that remains a very attractive but unaccomplished proposition

    Advanced photon counting techniques for long-range depth imaging

    Get PDF
    The Time-Correlated Single-Photon Counting (TCSPC) technique has emerged as a candidate approach for Light Detection and Ranging (LiDAR) and active depth imaging applications. The work of this Thesis concentrates on the development and investigation of functional TCSPC-based long-range scanning time-of-flight (TOF) depth imaging systems. Although these systems have several different configurations and functions, all can facilitate depth profiling of remote targets at low light levels and with good surface-to-surface depth resolution. Firstly, a Superconducting Nanowire Single-Photon Detector (SNSPD) and an InGaAs/InP Single-Photon Avalanche Diode (SPAD) module were employed for developing kilometre-range TOF depth imaging systems at wavelengths of ~1550 nm. Secondly, a TOF depth imaging system at a wavelength of 817 nm that incorporated a Complementary Metal-Oxide-Semiconductor (CMOS) 32×32 Si-SPAD detector array was developed. This system was used with structured illumination to examine the potential for covert, eye-safe and high-speed depth imaging. In order to improve the light coupling efficiency onto the detectors, the arrayed CMOS Si-SPAD detector chips were integrated with microlens arrays using flip-chip bonding technology. This approach led to the improvement in the fill factor by up to a factor of 15. Thirdly, a multispectral TCSPC-based full-waveform LiDAR system was developed using a tunable broadband pulsed supercontinuum laser source which can provide simultaneous multispectral illumination, at wavelengths of 531, 570, 670 and ~780 nm. The investigated multispectral reflectance data on a tree was used to provide the determination of physiological parameters as a function of the tree depth profile relating to biomass and foliage photosynthetic efficiency. Fourthly, depth images were estimated using spatial correlation techniques in order to reduce the aggregate number of photon required for depth reconstruction with low error. A depth imaging system was characterised and re-configured to reduce the effects of scintillation due to atmospheric turbulence. In addition, depth images were analysed in terms of spatial and depth resolution

    Dilemma of mathematics

    Get PDF
    The pursuit of knowledge and the use of reason, based on sense and observation is a key ingredient for research. Mathematics is a creation of human mind concerned chiefly with ideas, processes and reasoning. In this paper, we will try to give a new comprehensive definition of mathematics to understand “what is mathematics”. We will discuss the controversial nature and position of mathematics and its scientific status. We will highlight the position of mathematics in different civilizations. We will highlight the mythical issues about Mathematics. We will also discuss the current state of mathematics i.e. mathematics in crises, especially pure mathematics and will put forward the remedial suggestions. We have gathered together some of these impressions; these are all tentative, nothing final about them, but these are here nonetheless

    Advanced Photonic Sciences

    Get PDF
    The new emerging field of photonics has significantly attracted the interest of many societies, professionals and researchers around the world. The great importance of this field is due to its applicability and possible utilization in almost all scientific and industrial areas. This book presents some advanced research topics in photonics. It consists of 16 chapters organized into three sections: Integrated Photonics, Photonic Materials and Photonic Applications. It can be said that this book is a good contribution for paving the way for further innovations in photonic technology. The chapters have been written and reviewed by well-experienced researchers in their fields. In their contributions they demonstrated the most profound knowledge and expertise for interested individuals in this expanding field. The book will be a good reference for experienced professionals, academics and researchers as well as young researchers only starting their carrier in this field

    Sintering Applications

    Get PDF
    Sintering is one of the final stages of ceramics fabrication and is used to increase the strength of the compacted material. In the Sintering of Ceramics section, the fabrication of electronic ceramics and glass-ceramics were presented. Especially dielectric properties were focused on. In other chapters, sintering behaviour of ceramic tiles and nano-alumina were investigated. Apart from oxides, the sintering of non-oxide ceramics was examined. Sintering the metals in a controlled atmosphere furnace aims to bond the particles together metallurgically. In the Sintering of Metals section, two sections dealt with copper containing structures. The sintering of titanium alloys is another topic focused in this section. The chapter on lead and zinc covers the sintering in the field of extractive metallurgy. Finally two more chapter focus on the basics of sintering,i.e viscous flow and spark plasma sintering

    Aspectos de interconectividade dos moduladores de polímero

    Get PDF
    Orientador: Hugo Enrique Hernández-FigueroaTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: As interconexões ópticas e elétricas são de grande interese na area de encapsulamento de circuitos integrados híbridos fotônicos. Baixas perdas e banda larga são necessárias para o desenvolvimento de novas tecnologías na área. Nesta tese apresentan-se as seguintes contribuições originais: uma metodologia do modelamento de interconexões elétricas em encapsulamento de moduladores de polímero eletro-óptico, um dispositivo óptico compacto de banda larga para interconectar a plataforma de silício sobre isolante com a plataforma de filmes finos de polímero sobre silícioAbstract: Electrical and optical interconnects are of great interest for photonic integrated circuits with hybrid platforms. Low loss and wide band are essential for the development of new technologies in this area. In this thesis, we present the following original contributions: a methodology for modeling electrical ceramic interconnects inside an electrooptic polymer packaging, and a compact low-loss optical interconnect for the silicon-on-insulator platform to the thin-film polymer on silicon platformDoutoradoTelecomunicações e TelemáticaDoutor em Engenharia Elétrica07/2014-36CAPE

    Customized Integrated Circuits for Scientific and Medical Applications

    Get PDF

    Nonterrestrial utilization of materials: Automated space manufacturing facility

    Get PDF
    Four areas related to the nonterrestrial use of materials are included: (1) material resources needed for feedstock in an orbital manufacturing facility, (2) required initial components of a nonterrestrial manufacturing facility, (3) growth and productive capability of such a facility, and (4) automation and robotics requirements of the facility

    Surface Dynamics of Silicon Low-Index Surfaces Studied by Reflection High-Energy Electron Diffraction

    Get PDF
    Surface morphology during the growth of Si on Si(111)-(7x7) by femtosecond pulsed laser deposition (fsPLD) is studied using reflection high-energy electron diffraction (RHEED) at different temperatures. The growth of Si on Si(111) has received considerable attention as a model system of homoepitaxy. PLD is a deposition technique that uses much more energetic species (atoms and ions) compared to other physical vapor deposition (PVD), such as in molecular beam epitaxy. In this work, in situ reflection high energy electron diffraction (RHEED) was used to study the dynamics of PLD of Si on Si(111)-(7x7). Epitaxial growth of Si/Si(111)-(7x7) at temperatures as low as 210°C was observed. For this substrate temperature, no change in RHEED patterns after growth, and only reduction in intensity during deposition was observed. Surface Debye temperature of the topmost layer of the Si(111)-7x7 is measured by using RHEED. The diffraction intensity is distorted by the thermal vibration amplitude of atoms on the topmost layer of the surface. Influence of Si deposition on the temperature of Si(111) to (7x7) phase transition is also studied. The phase transition showed that Si deposition lowers the transition temperature. A Ti-sapphire laser (100 fs, 800 nm, 1 kHz) was used to ablate a Si target on Si(111)-(1x1) during quenching from high temperature. The RHEED intensity was observed as the substrate was exposed to the Si plume and the Si(111) substrate was quenched. The RHEED patterns showed a shift in the transition temperature from 840°C without the plume to 820°C with the plume. With laser fluence below the damage threshold, laser enhanced epitaxial growth shows a great improvement in deposit Si on Si(111)-7x7 at low temperature (room temperature)
    corecore