735 research outputs found

    A Whole-Body Pose Taxonomy for Loco-Manipulation Tasks

    Full text link
    Exploiting interaction with the environment is a promising and powerful way to enhance stability of humanoid robots and robustness while executing locomotion and manipulation tasks. Recently some works have started to show advances in this direction considering humanoid locomotion with multi-contacts, but to be able to fully develop such abilities in a more autonomous way, we need to first understand and classify the variety of possible poses a humanoid robot can achieve to balance. To this end, we propose the adaptation of a successful idea widely used in the field of robot grasping to the field of humanoid balance with multi-contacts: a whole-body pose taxonomy classifying the set of whole-body robot configurations that use the environment to enhance stability. We have revised criteria of classification used to develop grasping taxonomies, focusing on structuring and simplifying the large number of possible poses the human body can adopt. We propose a taxonomy with 46 poses, containing three main categories, considering number and type of supports as well as possible transitions between poses. The taxonomy induces a classification of motion primitives based on the pose used for support, and a set of rules to store and generate new motions. We present preliminary results that apply known segmentation techniques to motion data from the KIT whole-body motion database. Using motion capture data with multi-contacts, we can identify support poses providing a segmentation that can distinguish between locomotion and manipulation parts of an action.Comment: 8 pages, 7 figures, 1 table with full page figure that appears in landscape page, 2015 IEEE/RSJ International Conference on Intelligent Robots and System

    Supervised Autonomous Locomotion and Manipulation for Disaster Response with a Centaur-like Robot

    Full text link
    Mobile manipulation tasks are one of the key challenges in the field of search and rescue (SAR) robotics requiring robots with flexible locomotion and manipulation abilities. Since the tasks are mostly unknown in advance, the robot has to adapt to a wide variety of terrains and workspaces during a mission. The centaur-like robot Centauro has a hybrid legged-wheeled base and an anthropomorphic upper body to carry out complex tasks in environments too dangerous for humans. Due to its high number of degrees of freedom, controlling the robot with direct teleoperation approaches is challenging and exhausting. Supervised autonomy approaches are promising to increase quality and speed of control while keeping the flexibility to solve unknown tasks. We developed a set of operator assistance functionalities with different levels of autonomy to control the robot for challenging locomotion and manipulation tasks. The integrated system was evaluated in disaster response scenarios and showed promising performance.Comment: In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, October 201

    Beyond Basins of Attraction: Quantifying Robustness of Natural Dynamics

    Full text link
    Properly designing a system to exhibit favorable natural dynamics can greatly simplify designing or learning the control policy. However, it is still unclear what constitutes favorable natural dynamics and how to quantify its effect. Most studies of simple walking and running models have focused on the basins of attraction of passive limit-cycles and the notion of self-stability. We instead emphasize the importance of stepping beyond basins of attraction. We show an approach based on viability theory to quantify robust sets in state-action space. These sets are valid for the family of all robust control policies, which allows us to quantify the robustness inherent to the natural dynamics before designing the control policy or specifying a control objective. We illustrate our formulation using spring-mass models, simple low dimensional models of running systems. We then show an example application by optimizing robustness of a simulated planar monoped, using a gradient-free optimization scheme. Both case studies result in a nonlinear effective stiffness providing more robustness.Comment: 15 pages. This work has been accepted to IEEE Transactions on Robotics (2019

    On Foveated Gaze Control and Combined Gaze and Locomotion Planning

    Get PDF
    This chapter presents recent research results of our laboratory in the area of vision an
    • 

    corecore