4,888 research outputs found

    Dialogue as Data in Learning Analytics for Productive Educational Dialogue

    Get PDF
    This paper provides a novel, conceptually driven stance on the state of the contemporary analytic challenges faced in the treatment of dialogue as a form of data across on- and offline sites of learning. In prior research, preliminary steps have been taken to detect occurrences of such dialogue using automated analysis techniques. Such advances have the potential to foster effective dialogue using learning analytic techniques that scaffold, give feedback on, and provide pedagogic contexts promoting such dialogue. However, the translation of much prior learning science research to online contexts is complex, requiring the operationalization of constructs theorized in different contexts (often face-to-face), and based on different datasets and structures (often spoken dialogue). In this paper, we explore what could constitute the effective analysis of productive online dialogues, arguing that it requires consideration of three key facets of the dialogue: features indicative of productive dialogue; the unit of segmentation; and the interplay of features and segmentation with the temporal underpinning of learning contexts. The paper thus foregrounds key considerations regarding the analysis of dialogue data in emerging learning analytics environments, both for learning-science and for computationally oriented researchers

    Artificial Intelligence and Education. Guidance for Policy-makers

    Get PDF
    Artificial Intelligence (AI) has the potential to address some of the biggest challenges in education today, innovate teaching and learning practices, and ultimately accelerate the progress towards SDG 4. However, these rapid technological developments inevitably bring multiple risks and challenges, which have so far outpaced policy debates and regulatory frameworks. This publication offers guidance for policy-makers on how best to leverage the opportunities and address the risks, presented by the growing connection between AI and education. It starts with the essentials of AI: definitions, techniques and technologies. It continues with a detailed analysis of the emerging trends and implications of AI for teaching and learning, including how we can ensure the ethical, inclusive and equitable use of AI in education, how education can prepare humans to live and work with AI, and how AI can be applied to enhance education. It finally introduces the challenges of harnessing AI to achieve SDG 4 and offers concrete actionable recommendations for policy-makers to plan policies and programmes for local contexts

    Combining exploratory learning with structured practice educational technologies to foster both conceptual and procedural fractions knowledge

    Get PDF
    Educational technologies in mathematics typically focus on fostering either procedural knowledge by means of structured tasks or, less often, conceptual knowledge by means of exploratory tasks. However, both types of knowledge are needed for complete domain knowledge that persists over time and supports subsequent learning. We investigated in two quasi-experimental studies whether a combination of an exploratory learning environment, providing exploratory tasks, and an intelligent tutoring system, providing structured tasks, fosters procedural and conceptual knowledge more than the intelligent tutoring system alone. Participants were 121 students from the UK (aged 8–10 years old) and 151 students from Germany (aged 10–12 years old) who were studying equivalent fractions. Results confirmed that students learning with a combination of exploratory and structured tasks gained more conceptual knowledge and equal procedural knowledge compared to students learning with structured tasks only. This supports the use of different but complementary educational technologies, interleaving exploratory and structured tasks, to achieve a “combination effect” that fosters robust fractions knowledge

    State of the art and practice in AI in education

    Get PDF
    Recent developments in Artificial Intelligence (AI) have generated great expectations for the future impact of AI in education and learning (AIED). Often these expectations have been based on misunderstanding current technical possibilities, lack of knowledge about state-of-the-art AI in education, and exceedingly narrow views on the functions of education in society. In this article, we provide a review of existing AI systems in education and their pedagogic and educational assumptions. We develop a typology of AIED systems and describe different ways of using AI in education and learning, show how these are grounded in different interpretations of what AI and education is or could be, and discuss some potential roadblocks on the AIED highway

    Introductory programming: a systematic literature review

    Get PDF
    As computing becomes a mainstream discipline embedded in the school curriculum and acts as an enabler for an increasing range of academic disciplines in higher education, the literature on introductory programming is growing. Although there have been several reviews that focus on specific aspects of introductory programming, there has been no broad overview of the literature exploring recent trends across the breadth of introductory programming. This paper is the report of an ITiCSE working group that conducted a systematic review in order to gain an overview of the introductory programming literature. Partitioning the literature into papers addressing the student, teaching, the curriculum, and assessment, we explore trends, highlight advances in knowledge over the past 15 years, and indicate possible directions for future research

    Generative Artificial Intelligence for Software Engineering -- A Research Agenda

    Full text link
    Generative Artificial Intelligence (GenAI) tools have become increasingly prevalent in software development, offering assistance to various managerial and technical project activities. Notable examples of these tools include OpenAIs ChatGPT, GitHub Copilot, and Amazon CodeWhisperer. Although many recent publications have explored and evaluated the application of GenAI, a comprehensive understanding of the current development, applications, limitations, and open challenges remains unclear to many. Particularly, we do not have an overall picture of the current state of GenAI technology in practical software engineering usage scenarios. We conducted a literature review and focus groups for a duration of five months to develop a research agenda on GenAI for Software Engineering. We identified 78 open Research Questions (RQs) in 11 areas of Software Engineering. Our results show that it is possible to explore the adoption of GenAI in partial automation and support decision-making in all software development activities. While the current literature is skewed toward software implementation, quality assurance and software maintenance, other areas, such as requirements engineering, software design, and software engineering education, would need further research attention. Common considerations when implementing GenAI include industry-level assessment, dependability and accuracy, data accessibility, transparency, and sustainability aspects associated with the technology. GenAI is bringing significant changes to the field of software engineering. Nevertheless, the state of research on the topic still remains immature. We believe that this research agenda holds significance and practical value for informing both researchers and practitioners about current applications and guiding future research

    Power to the Teachers:An Exploratory Review on Artificial Intelligence in Education

    Get PDF
    This exploratory review attempted to gather evidence from the literature by shedding light on the emerging phenomenon of conceptualising the impact of artificial intelligence in education. The review utilised the PRISMA framework to review the analysis and synthesis process encompassing the search, screening, coding, and data analysis strategy of 141 items included in the corpus. Key findings extracted from the review incorporate a taxonomy of artificial intelligence applications with associated teaching and learning practice and a framework for helping teachers to develop and self-reflect on the skills and capabilities envisioned for employing artificial intelligence in education. Implications for ethical use and a set of propositions for enacting teaching and learning using artificial intelligence are demarcated. The findings of this review contribute to developing a better understanding of how artificial intelligence may enhance teachers’ roles as catalysts in designing, visualising, and orchestrating AI-enabled teaching and learning, and this will, in turn, help to proliferate AI-systems that render computational representations based on meaningful data-driven inferences of the pedagogy, domain, and learner models
    • …
    corecore