1,273 research outputs found

    CleanPage: Fast and Clean Document and Whiteboard Capture

    Get PDF
    The move from paper to online is not only necessary for remote working, it is also significantly more sustainable. This trend has seen a rising need for the high-quality digitization of content from pages and whiteboards to sharable online material. However, capturing this information is not always easy nor are the results always satisfactory. Available scanning apps vary in their usability and do not always produce clean results, retaining surface imperfections from the page or whiteboard in their output images. CleanPage, a novel smartphone-based document and whiteboard scanning system, is presented. CleanPage requires one button-tap to capture, identify, crop, and clean an image of a page or whiteboard. Unlike equivalent systems, no user intervention is required during processing, and the result is a high-contrast, low-noise image with a clean homogenous background. Results are presented for a selection of scenarios showing the versatility of the design. CleanPage is compared with two market leader scanning apps using two testing approaches: real paper scans and ground-truth comparisons. These comparisons are achieved by a new testing methodology that allows scans to be compared to unscanned counterparts by using synthesized images. Real paper scans are tested using image quality measures. An evaluation of standard image quality assessments is included in this work, and a novel quality measure for scanned images is proposed and validated. The user experience for each scanning app is assessed, showing CleanPage to be fast and easier to use

    CleanPage: Fast and Clean Document and Whiteboard Capture

    Get PDF
    The move from paper to online is not only necessary for remote working, it is also significantly more sustainable. This trend has seen a rising need for the high-quality digitization of content from pages and whiteboards to sharable online material. However, capturing this information is not always easy nor are the results always satisfactory. Available scanning apps vary in their usability and do not always produce clean results, retaining surface imperfections from the page or whiteboard in their output images. CleanPage, a novel smartphone-based document and whiteboard scanning system, is presented. CleanPage requires one button-tap to capture, identify, crop, and clean an image of a page or whiteboard. Unlike equivalent systems, no user intervention is required during processing, and the result is a high-contrast, low-noise image with a clean homogenous background. Results are presented for a selection of scenarios showing the versatility of the design. CleanPage is compared with two market leader scanning apps using two testing approaches: real paper scans and ground-truth comparisons. These comparisons are achieved by a new testing methodology that allows scans to be compared to unscanned counterparts by using synthesized images. Real paper scans are tested using image quality measures. An evaluation of standard image quality assessments is included in this work, and a novel quality measure for scanned images is proposed and validated. The user experience for each scanning app is assessed, showing CleanPage to be fast and easier to use

    Parahippocampal cortex is involved in material processing via echoes in blind echolocation experts

    Get PDF
    Some blind humans use sound to navigate by emitting mouth-clicks and listening to the echoes that reflect from silent objects and surfaces in their surroundings. These echoes contain information about the size, shape, location, and material properties of objects. Here we present results from an fMRI experiment that investigated the neural activity underlying the processing of materials through echolocation. Three blind echolocation experts (as well as three blind and three sighted non-echolocating control participants) took part in the experiment. First, we made binaural sound recordings in the ears of each echolocator while he produced clicks in the presence of one of three different materials (fleece, synthetic foliage, or whiteboard), or while he made clicks in an empty room. During fMRI scanning these recordings were played back to participants. Remarkably, all participants were able to identify each of the three materials reliably, as well as the empty room. Furthermore, a whole brain analysis, in which we isolated the processing of just the reflected echoes, revealed a material-related increase in BOLD activation in a region of left parahippocampal cortex in the echolocating participants, but not in the blind or sighted control participants. Our results, in combination with previous findings about brain areas involved in material processing, are consistent with the idea that material processing by means of echolocation relies on a multi-modal material processing area in parahippocampal cortex

    Emerging technologies for learning report (volume 3)

    Get PDF

    Low-Light Hyperspectral Image Enhancement

    Full text link
    Due to inadequate energy captured by the hyperspectral camera sensor in poor illumination conditions, low-light hyperspectral images (HSIs) usually suffer from low visibility, spectral distortion, and various noises. A range of HSI restoration methods have been developed, yet their effectiveness in enhancing low-light HSIs is constrained. This work focuses on the low-light HSI enhancement task, which aims to reveal the spatial-spectral information hidden in darkened areas. To facilitate the development of low-light HSI processing, we collect a low-light HSI (LHSI) dataset of both indoor and outdoor scenes. Based on Laplacian pyramid decomposition and reconstruction, we developed an end-to-end data-driven low-light HSI enhancement (HSIE) approach trained on the LHSI dataset. With the observation that illumination is related to the low-frequency component of HSI, while textural details are closely correlated to the high-frequency component, the proposed HSIE is designed to have two branches. The illumination enhancement branch is adopted to enlighten the low-frequency component with reduced resolution. The high-frequency refinement branch is utilized for refining the high-frequency component via a predicted mask. In addition, to improve information flow and boost performance, we introduce an effective channel attention block (CAB) with residual dense connection, which served as the basic block of the illumination enhancement branch. The effectiveness and efficiency of HSIE both in quantitative assessment measures and visual effects are demonstrated by experimental results on the LHSI dataset. According to the classification performance on the remote sensing Indian Pines dataset, downstream tasks benefit from the enhanced HSI. Datasets and codes are available: \href{https://github.com/guanguanboy/HSIE}{https://github.com/guanguanboy/HSIE}

    Seeing with sound: Investigating the behavioural applications and neural correlates of human echolocation

    Get PDF
    Some blind humans use the reflected echoes from self-produced signals to perceive their silent surroundings. Although the use of echolocation is well documented in animals such as bats and dolphins, comparatively little is known about human echolocation. The overarching goal of the work presented in this thesis was to shed light on some of the basic functions of human echolocation, including the perception of the shape, size, and material. I addressed these aspects of echolocation using behavioural psychophysics and neuroimaging. In Chapter 2 I show that blind echolocators were able to accurately identify the shape of 2D objects, but that their ability to do so was dependent on the use of head and body movements to ‘scan’ the objects’ edges. I suggest that these scanning movements may be similar to the many saccades made by sighted individuals when visually surveying an object or scene. In Chapter 3 I addressed the possibility that object size perception via echolocation shows size constancy – a perceptual phenomenon associated with vision. The results revealed that an expert echolocator accurately perceived the true physical size of objects independent of their distance, even though changes to distance directly affect size-related echo information. The results of this study highlight the ‘visual’ nature of echolocation, and suggest further parallels between the two modalities than previously known or theorized. Chapter 4 presents the results of a functional neuroimaging study aimed at uncovering the neural correlates of material processing via echolocation. By having echolocators listen to recordings of echoes reflected from surfaces of different materials, I show not only that they can determine the material properties of objects, but also that the neural processing underlying this ability may make use of a visual- and auditory-material processing area in the parahippocampal cortex. Taken together, the work presented in the current thesis describes some of the recent contributions to our understanding of human echolocation, with a particular emphasis on its apparent parallels with vision and visual processing. The results of this work show that accurate and reliable information can be extracted from echoes, thus supporting echolocation as a viable resource for the blind

    Towards effective Web site designs: A framework for modeling, design evaluation and enhancement

    Get PDF
    Effective Web site design is critical to the success of e-commerce. Therefore, the evaluation and enhancement of a Web site design is of great importance. In this vein, accessibility is important and has been examined by a lot of researchers from different points of views. By and large, Web site accessibility is a structural problem and may be analytically investigated using mathematical approach. We propose a framework for representing real-world design problems as generic Web site designs, which then can be mapped into accessibility models analyzable or solvable using established analytical techniques. The framework consists of generic design and graph models, with the necessary mapping. We describe a generic Web site design using its objective and constraints, which correspond to important design requirements. By representing design problems using well-defined structures and rigorous analysis methods, this framework measures Web site accessibility using systematic and quantifiable approaches rather than qualitative ad-hoc practice. Hence, the framework facilitates the overall Web site design process, enhances design quality, and increases ease of analysis, implementation and continuous improvement. © 2005 IEEE.published_or_final_versio

    Prospective study for commercial and low-cost hyperspectral imaging systems to evaluate thermal tissue effect on bovine liver samples

    Get PDF
    Thermal ablation modalities, for example radiofrequency ablation (RFA) and microwave ablation, are intended to prompt controlled tumour removal by raising tissue temperature. However, monitoring the size of the resulting tissue damage during the thermal removal procedures is a challenging task. The objective of this study was to evaluate the observation of RFA on an ex vivo liver sample with both a commercial and a low-cost system to distinguish between the normal and the ablated regions as well as the thermally affected regions. RFA trials were conducted on five different ex vivo normal bovine samples and monitored initially by a custom hyperspectral (HS) camera to measure the diffuse reflectance (Rd) utilising a polychromatic light source (tungsten halogen lamp) within the spectral range 348–950 nm. Next, the light source was replaced with monochromatic LEDs (415, 565 and 660 nm) and a commercial charge-coupled device (CCD) camera was used instead of the HS camera. The system algorithm comprises image enhancement (normalisation and moving average filter) and image segmentation with K-means clustering, combining spectral and spatial information to assess the variable responses to polychromatic light and monochromatic LEDs to highlight the differences in the Rd properties of thermally affected/normal tissue regions. The measured spectral signatures of the various regions, besides the calculation of the standard deviations (δ) between the generated six groups, guided us to select three optimal wavelengths (420, 540 and 660 nm) to discriminate between these various regions. Next, we selected six spectral images to apply the image processing to (at 450, 500, 550, 600, 650 and 700 nm). We noticed that the optimum image is the superimposed spectral images at 550, 600, 650 and 700 nm, which are capable of discriminating between the various regions. Later, we measured Rd with the CCD camera and commercially available monochromatic LED light sources at 415, 565 and 660 nm. Compared to the HS camera results, this system was more capable of identifying the ablated and the thermally affected regions of surface RFA than the side-penetration RFA of the investigated ex vivo liver samples. However, we succeeded in developing a low-cost system that provides satisfactory information to highlight the ablated and thermally affected region to improve the outcome of surgical tumour ablation with much shorter time for image capture and processing compared to the HS system
    • …
    corecore