110,320 research outputs found

    An initiative in multidisciplinary optimization of rotorcraft

    Get PDF
    Described is a joint NASA/Army initiative at the Langley Research Center to develop optimization procedures aimed at improving the rotor blade design process by integrating appropriate disciplines and accounting for important interactions among the disciplines. The activity is being guided by a Steering Committee made up of key NASA and Army researchers and managers. The committee, which has been named IRASC (Integrated Rotorcraft Analysis Steering Committee), has defined two principal foci for the activity: a white paper which sets forth the goals and plans of the effort; and a rotor design project which will validate the basic constituents, as well as the overall design methodology for multidisciplinary optimization. The optimization formulation is described in terms of the objective function, design variables, and constraints. Additionally, some of the analysis aspects are discussed and an initial attempt at defining the interdisciplinary couplings is summarized. At this writing, some significant progress has been made, principally in the areas of single discipline optimization. Results are given which represent accomplishments in rotor aerodynamic performance optimization for minimum hover horsepower, rotor dynamic optimization for vibration reduction, and rotor structural optimization for minimum weight

    Parsimonious Black-Box Adversarial Attacks via Efficient Combinatorial Optimization

    Full text link
    Solving for adversarial examples with projected gradient descent has been demonstrated to be highly effective in fooling the neural network based classifiers. However, in the black-box setting, the attacker is limited only to the query access to the network and solving for a successful adversarial example becomes much more difficult. To this end, recent methods aim at estimating the true gradient signal based on the input queries but at the cost of excessive queries. We propose an efficient discrete surrogate to the optimization problem which does not require estimating the gradient and consequently becomes free of the first order update hyperparameters to tune. Our experiments on Cifar-10 and ImageNet show the state of the art black-box attack performance with significant reduction in the required queries compared to a number of recently proposed methods. The source code is available at https://github.com/snu-mllab/parsimonious-blackbox-attack.Comment: Accepted and to appear at ICML 201

    Control theory for principled heap sizing

    Get PDF
    We propose a new, principled approach to adaptive heap sizing based on control theory. We review current state-of-the-art heap sizing mechanisms, as deployed in Jikes RVM and HotSpot. We then formulate heap sizing as a control problem, apply and tune a standard controller algorithm, and evaluate its performance on a set of well-known benchmarks. We find our controller adapts the heap size more responsively than existing mechanisms. This responsiveness allows tighter virtual machine memory footprints while preserving target application throughput, which is ideal for both embedded and utility computing domains. In short, we argue that formal, systematic approaches to memory management should be replacing ad-hoc heuristics as the discipline matures. Control-theoretic heap sizing is one such systematic approach

    An initiative in multidisciplinary optimization of rotorcraft

    Get PDF
    Described is a joint NASA/Army initiative at the Langley Research Center to develop optimization procedures aimed at improving the rotor blade design process by integrating appropriate disciplines and accounting for important interactions among the disciplines. The activity is being guided by a Steering Committee made up of key NASA and Army researchers and managers. The committee, which has been named IRASC (Integrated Rotorcraft Analysis Steering Committee), has defined two principal foci for the activity: a white paper which sets forth the goals and plans of the effort; and a rotor design project which will validate the basic constituents, as well as the overall design methodology for multidisciplinary optimization. The paper describes the optimization formulation in terms of the objective function, design variables, and constraints. Additionally, some of the analysis aspects are discussed and an initial attempt at defining the interdisciplinary couplings is summarized. At this writing, some significant progress has been made, principally in the areas of single discipline optimization. Results are given which represent accomplishments in rotor aerodynamic performance optimization for minimum hover horsepower, rotor dynamic optimization for vibration reduction, and rotor structural optimization for minimum weight

    Capital account regulations for stability and development: a new approach

    Full text link
    This repository item contains a single issue of Issues in Brief, a series of policy briefs that began publishing in 2008 by the Boston University Frederick S. Pardee Center for the Study of the Longer-Range Future.In the wake of the financial crisis numerous emerging market and developing countries have been deploying what have traditionally been referred to as ‘capital controls’ to curb excessive speculation on their currencies and domestic assets. In response to those efforts, French President Nicolas Sarkozy called on the International Monetary Fund to develop a set of guidelines for the use of capital controls. The goal is for the President to present such guidelines at the G-20 Summit in Cannes this year. The IMF has published a preliminary set of guidelines to that end. This policy brief provides a critical review of those guidelines and offers an alternative protocol for a development friendly-approach to capital account regulation. In this policy brief, the co-conveners of the Pardee Center Task Force on Managing Capital Flows for Long-Run Development argue that capital account regulations (CARs) should be viewed as an essential tool in the macroeconomic policy toolkit. Based on discussions that occurred at the Task Force meeting in September 2011, the authors present an alternative set of guidelines for how and when CARs should be employed, and call for international financial institutions and international trade agreements to ensure that policy space remains available to allow developing countries to employ CARs when deemed necessary for financial stability and economic development
    corecore