13,569 research outputs found

    Quantitative Assessment of TV White Space in India

    Full text link
    Licensed but unutilized television (TV) band spectrum is called as TV white space in the literature. Ultra high frequency (UHF) TV band spectrum has very good wireless radio propagation characteristics. The amount of TV white space in the UHF TV band in India is of interest. Comprehensive quantitative assessment and estimates for the TV white space in the 470-590MHz band for four zones of India (all except north) are presented in this work. This is the first effort in India to estimate TV white spaces in a comprehensive manner. The average available TV white space per unit area in these four zones is calculated using two methods: (i) the primary (licensed) user and secondary (unlicensed) user point of view; and, (ii) the regulations of Federal Communications Commission in the United States. By both methods, the average available TV white space in the UHF TV band is shown to be more than 100MHz! A TV transmitter frequency-reassignment algorithm is also described. Based on spatial-reuse ideas, a TV channel allocation scheme is presented which results in insignicant interference to the TV receivers while using the least number of TV channels for transmission across the four zones. Based on this reassignment, it is found that four TV band channels (or 32MHz) are sufficient to provide the existing UHF TV band coverage in India

    A Comprehensive Survey on Networking over TV White Spaces

    Full text link
    The 2008 Federal Communication Commission (FCC) ruling in the United States opened up new opportunities for unlicensed operation in the TV white space spectrum. Networking protocols over the TV white spaces promise to subdue the shortcomings of existing short-range multi-hop wireless architectures and protocols by offering more availability, wider bandwidth, and longer-range communication. The TV white space protocols are the enabling technologies for sensing and monitoring, Internet-of-Things (IoT), wireless broadband access, real-time, smart and connected community, and smart utility applications. In this paper, we perform a retrospective review of the protocols that have been built over the last decade and also the new challenges and the directions for future work. To the best of our knowledge, this is the first comprehensive survey to present and compare existing networking protocols over the TV white spaces.Comment: 19 page

    Spectrum Utilisation and Management in Cognitive Radio Networks

    Get PDF

    Raman spectroscopic study of inorganic salts present in atmospheric particulate matter: their origin and implications

    Get PDF
    The aim of this doctoral thesis is to investigate aspects concerning the atmospheric origin of some inorganic salts of known atmospheric occurrence. In this context, based on laboratory experiments, the atmospheric formation of certain inorganic salts is proposed in view of the common presence of certain ions in the atmosphere and their interaction with atmospheric water. The condensation-evaporation cycles have a strong influence on the composition of the particles and the modifications taking place during the transport (aging). The evaporation of solution droplets containing specific ions results in the crystallization of mixed salts (e.g., bloedite, darapskite, koktaite, etc.) confirming the preponderant role of water in the modification of the atmospheric particles. Moreover, certain alkaline minerals can react with (NH4)2SO4 in contact with humid air, showing that water is a key factor to trigger chemical reactions in solid particles. Raman spectroscopy is the main analytical tool used in this work, therefore, the bands observed in the Raman spectra of all pure salts considered in this investigation have been properly assigned. The Raman-specific features of some salts were discussed from the point of view of their crystal structure. General aspects of the significance of atmospheric particulate matter to human health, the atmospheric chemistry and climate are outlined

    Laboratory Development of an AI System for the Real-Time Monitoring of Water Quality and Detection of Anomalies Arising from Chemical Contamination

    Get PDF
    Monitoring water quality is critical for mitigating risks to human health and the environment. It is also essential for ensuring high quality water-based and water-dependent products and services. The monitoring and detection of chemical contamination are often based around a small set of parameters or substances. Conventional monitoring often involves the collection of water samples in the field and subsequent analyses in the laboratory. Such strategies are expensive, time consuming, and focused on a narrow set of potential risks. They also induce a significant time delay between a contamination event and a possible reactive measure. Here, we developed a real-time monitoring system based on Artificial Intelligence (AI) for field deployable sensors. We used data obtained from full-scan UV-spec and fluorescence sensors for validation in this study. This multi-sensor system consists of (a) anomaly detection that uses multivariate statistical methods to detect any anomalous state in an aqueous environment and (b) anomaly identification, using Machine Learning (ML) to classify the anomaly into one of the a priori known categories. For a proof of concept, we tested this methodology on a supply of municipal drinking water and a few representative organic chemical contaminants applied in a laboratory-controlled environment. The outcomes confirm the ability for the multi-sensor system to detect and identify changes in water quality due to incidences of chemical contamination. The method may be applied to numerous other areas where water quality should be measured online and in real time, such as in surface-water, urban runoff, or food and industrial process water.publishedVersio

    Environmental geochemistry of Potentially Toxic Elements (PTEs) and Persistent Organic Pollutants (POPs) as a tool of exposure evaluation and chemical risk assessment

    Get PDF
    Environmental pollution is one of the most challenging environmental issues to tackle due to its impact to human health and the ecosystem. One of the main objectives of environmental geochemistry is to investigate, characterise, and reveal the patterns of organic compounds and inorganic elements and further unveil their possible sources. Geogenic features and anthropogenic activities are the main sources of environmental contamination which are likely to release these contaminants into atmospheric, soil and water media. Moreover, anthropogenic activities let out chemicals produced from industrial activities, domestic, livestock and municipal wastes (including wastewater), agrochemicals, and petroleum-derived products. Organic pollutants cover a large group of synthetized pollutants and Persistent Organic Pollutants (POPs) have received a specific attention due to their physico-chemical properties, high toxicity, and subject to long-range atmospheric transfer. Polychlorinated biphenyls (PCBs), Polycyclic Aromatic Hydrocarbons (PAHs) and Organochlorines Pesticides (OCPs) are the main POPs that are subject to different regulation schemes to their irreversible adverse effects to both human and wildlife health. Stockholm Convention, Rotterdam and Basel, World Health organisation (WHO) and United Nations Economic Commission for Europe POPs Protocol have so far addressed, threated and introduced legislation which ban or fix threshold’s values of these POPs into environment. Potentially Toxic Elements (PTEs) are widespread metals/metalloids related to geogenic and/or anthropogenic activities. PTEs are one of the major concerns in the environment because their concentrations are increasing due to accelerated population growth rate, higher level of urbanisation and industrialisation providing a great variety of anthropogenic contamination/pollution sources. They have often been given special emphasis because their accumulation in different matrices can cause soil and land degradation and they can be transferred into the human body as a consequence of dermal contact, inhalation and ingestion through food chain and drinking water. PTEs are generally non-biodegradable having long biological half-lives and tend to accumulate in soils being absorbed to clay minerals and organic matter. However, their bioavailability is influenced by different physicochemical processes (e.g. pH, Eh) and physiological adaptation. PTEs and POPs can be observed in different environmental media but soil is considered an important reservoir due to its physico-chemical properties which confer high retention capacity of these pollutants. Soil contamination has been increasing worldwide and has become the focus of attention in recent years. Several soil parent materials are natural sources of certain organic contaminants, elements, and these can pose a risk to the environment and human health at elevated concentrations. For that, various geostatistical computations have been used to identify source patterns of different pollutants related to underlying geological features and/or anthropogenic activities, and to further distinguish mineralisation from contamination. Several single and complex contamination/mineralisation indices such as Enrichment Factor, Geo-accumulation Index or Single Pollution Index have been elaborated to quantify the contamination or mineralisation status of different PTEs. They are generally based on intervention limits (thresholds) or background/baseline values of a single element based on National Legislation, as a reference. Indices based on intervention limits (thresholds) are easily interpretable and comparable, but they disregard the compositional nature of geochemical data; hence they can be biased and/or spurious. This PhD research project reveals novel geostatistical computations that will lay out sources patterns of Potentially Toxic Elements (PTEs) and Persistent Organic Pollutants (POPs), and assess the soils contamination levels in the central-southern Italy. Series of follow up studies have provided an invaluable baseline for these contaminants distribution in Italy to push towards an institutional response for more adequate regulation of these pollutants worldwide. A further ongoing research project is currently investigating the content and bioavailability of mercury and Potentially Toxic Elements (PTEs) in artisanal and small-scale gold mining (ASGM) districts of Kedougou (Senegal). This study in particular will represent a fundamental stepping stone to build a baseline review of PTEs in ASGM of Kedougou (Senegal) and evaluate human health risks from exposure of PTEs. It is envisaged that the results of this study should trigger more detailed surveys in contaminated areas as well as ad-hoc risk-based studies, which in the long-term will constitute a strong argument to cause an adequate institutional response by the Senegalese regulating authorities for a full application the Minamata convention

    Alternative Network Deployments: Taxonomy, Characterization, Technologies, and Architectures

    Get PDF
    This document presents a taxonomy of a set of "Alternative Network Deployments" that emerged in the last decade with the aim of bringing Internet connectivity to people or providing a local communication infrastructure to serve various complementary needs and objectives. They employ architectures and topologies different from those of mainstream networks and rely on alternative governance and business models. The document also surveys the technologies deployed in these networks, and their differing architectural characteristics, including a set of definitions and shared properties. The classification considers models such as Community Networks, Wireless Internet Service Providers (WISPs), networks owned by individuals but leased out to network operators who use them as a low-cost medium to reach the underserved population, networks that provide connectivity by sharing wireless resources of the users, and rural utility cooperatives
    • …
    corecore