51 research outputs found

    Photon Generation and Dissipation in Organic Light-Emitting Diodes

    Get PDF
    By using phosphorescent and thermally activated delayed fluorescence emitters, the internal quantum efficiency of organic light-emitting diodes (OLEDs) can now reach 100%. However, a major fraction of generated photons is trapped inside the device, because of the intrinsic multi-layer device structure and the mismatch of refractive indices. This thesis comprises different approaches for the efficiency enhancement of planar OLEDs. In particular, outcoupling strategies to extract trapped photons to obtain highly efficient OLEDs are investigated

    Organic Light Emitting Diodes: Electron Injection Layers for Advanced Solution Processed Device Architectures

    Get PDF

    Computer aided design of stable and efficient OLEDs

    Get PDF

    Field Emission Organic Light Emitting Diode

    Get PDF

    ์œ ๊ธฐ๋ฐœ๊ด‘์†Œ์ž์— ๋Œ€ํ•œ ๋‹ค์–‘ํ•œ ๊ด‘์ถ”์ถœ ๊ตฌ์กฐ์™€ ๋ฐฐํ–ฅ ๋ถ„๊ทน ๋ถ„์ž์˜ ํšจ๊ณผ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์žฌ๋ฃŒ๊ณตํ•™๋ถ€, 2020. 8. ๊น€์žฅ์ฃผ.Since the first electroluminescence (EL) of organic compound was observed in the anthracene single crystal in 1965, organic light-emitting diodes (OLEDs) have undergone numerous developments, and have recently become the mainstream of small-sized displays. In addition, as OLEDs will have a modest substrate dependency, it has the potential to receive even more attention as the next generation display like flexible or transparent displays. The remaining challenges for OLEDs are high efficiency, and operational stability. In general, because organic materials have a wide emission spectrum, OLED can be a good lighting with a high color rendering index (CRI). It can also be used as a display with high color purity by optimizing the cavity length. However, more than half of the photons generated in OLEDs are dissipated due to total internal reflection by high-refractive-index organic layers and the substrate. Therefore, light extraction technology is required to increase the efficiency and reduce the power consumption of OLEDs. In addition, as mentioned before, it is necessary to consider the lifetime of the device. There have been many studies on the short operation lifetime of OLEDs, and several mechanisms have been proposed, but there is no concrete description of the origin of degradation. Nonetheless, it is obvious that the stability of the layers constituting the OLED should be considered for high operational stability. This thesis concerns two research topics: (1) simple and efficient light extraction method for OLED lighting and display, and (2) improving operation lifetime of OLED using spontaneous orientation polarization molecule. In chapter 1, a brief introduction of OLEDs will be provided. In chapter 2, a facile and effective method for fabricating random organic microstructures for efficient light extraction from blue OLEDs is presented. Simple drop casting of a TCTA and B4PyMPM mixed solution followed by UV curing results in films with irregular-shaped microstructures (DACMs), ideal for light extraction without diffraction patterns. An external quantum efficiency (EQE) of 44.3% is realized by attaching DACMs formed on a polymer film to a blue phosphorescent OLED. The efficiency is improved by 35% compared to a planar device without the light extraction layer, greater than the 22% improvement obtained by using microlens arrays. The method is useful for OLED lighting and potentially in displays because of the simple fabrication method that is applicable to a large area on rigid or flexible substrates, the low material cost, the insolubility of the microstructure in alkyl halide solvents such as chloroform, and the controllability of the structure through the solution process. In chapter 3, we show the damageless light extraction structure for top-emittng organic light-emitting diodes (TEOLEDs). TEOLEDs are used in small displays, due to the high aperture ratios, unblurred imaging, and high color purity. However, the strong cavity structures responsible for these advantages result in a high optical loss within metal electrodes. Furthermore, as there is no substrate in the light path, it is rather complicated to form a structure on the emission surface without damage. Here, we present a facile and effective method for light extraction of TEOLEDs. When 1,5-diaminoanthraquinone (DAAQ) is deposited on the Ag electrode, crystallization occurs immediately and nanowire arrays are formed in the out-of-plane direction. The shape and distribution of nanowire arrays can be controlled by deposition thickness and evaporation rate. In addition, morphological changes affect the transmittance of DAAQ-deposited Ag thin films. DAAQ nanowire arrays were applied to a red phosphorescent inverted TEOLED, enhancing the external quantum efficiency (EQE) by 8.6% in a narrow full-width-at-half-maximum (FWHM) device, and by 10.6% in a wide FWHM device. The emission spectra of the out-coupled devices are similar to those of the reference devices, as the DAAQ layer is located outside the OLED stacks sandwiched between two highly reflective metal electrodes. The method is useful for OLED displays because it is simple, vacuum-processable, and does not compromise device lifetime or the emission spectrum. In chapter 4, we suggest the importance of patternability of internal light extraction layer. Integration of internal light extraction layers in OLED displays requires electrical connection between driving circuits in the backplane and an OLED electrode, therefore needs fabrication of a via hole. Generally, internal light extraction layers consist of two materials with different refractive indices; thus, good patternability may be difficult with the matched etch selectivities of these two materials. Both the patternability of the internal light extraction layer and high out-coupling efficiency are important so, it needs a proper etchant which arent lowering the extraction efficiency by demolishing its structure. Here, the patternability of light extraction layers is discussed and demonstrated experimentally. The random scattering layer (RSL) composed of SiOx nano scatterers and a TiO2 planarization layer was used in this study and it was patterned by photolithography and wet etching processes. For matching the etching selectivity of those two different materials, a mixture of buffered oxide etchant (BOE) and phosphoric acid (H3PO4), in a volume ratio of 0.5 of H3PO4 to BOE, shows the best results for forming electrical channels through the out-coupling layer. The OLEDs fabricated on this patterned substrate showed similar current density-voltage (J-V) characteristics to OLEDs on a glass substrate with low leakage levels. The device showed over 50% enhancement of external quantum efficiency (EQE; from 21.7% to 32.7%), similar to the device without via holes. Chapter 5 contains a method for improving the stability of electron transporting layer. After the alignment of permanent dipole moment (PDM) was found in Alq3, it was revealed that spontaneous orientation polarization (SOP) was observed in several electron transporting materials. Although studies on the electrical effects of the polarization have been reported, there are few reports on the effects of polarization on the lifetime of device. Here, we observed the SOP characteristics and the change in the lifetime of device when BAlq was doped in PO-T2T with different volume ratios. As the polarization increased, the operation lifetime also increased and the applied voltage change decreased. In addition, the lifetime enhancement was only observed when there was a polarized layer at the interface with the emtting layer (EML). This shows that hole blocking layer (HBL) can enhance the lifetime when it has a negative surface charge at the interface with EML, and also indicates that the SOP characteristics of the molecule should be considered for improving the lifetime.1965 ๋…„, ์•ˆํŠธ๋ผ์„ผ ๋‹จ๊ฒฐ์ •์—์„œ ์œ ๊ธฐ๋ฌผ์˜ ์ฒซ ์ „๊ธฐ ๋ฐœ๊ด‘์ด ๋ฐœ๊ฒฌ๋œ ์ดํ›„, ์œ ๊ธฐ ๋ฐœ๊ด‘์†Œ์ž๋Š” ๋งŽ์€ ๋ฐœ์ „์„ ๊ฑฐ๋“ญํ•ด ์ตœ๊ทผ ์†Œํ˜• ๋””์Šคํ”Œ๋ ˆ์ด์˜ ์ฃผ๋ฅ˜๋ฅผ ์ด๋ค˜๋‹ค. ๋˜ํ•œ ์œ ๊ธฐ ๋ฐœ๊ด‘์†Œ์ž๋Š” ์ ์€ ๊ธฐํŒ ์˜์กด์„ฑ์„ ๊ฐ–๊ธฐ ๋•Œ๋ฌธ์— ํ”Œ๋ ‰์‹œ๋ธ” ๋””์Šคํ”Œ๋ ˆ์ด๋‚˜ ํˆฌ๋ช… ๋””์Šคํ”Œ๋ ˆ์ด์™€ ๊ฐ™์€ ์ฐจ์„ธ๋Œ€ ๋””์Šคํ”Œ๋ ˆ์ด๋กœ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ๋Š” ์ž ์žฌ๋ ฅ์„ ๊ฐ–๊ณ  ์žˆ๋‹ค. ์œ ๊ธฐ ๋ฐœ๊ด‘์†Œ์ž์—์„œ ๋‚จ์€ ๊ณผ์ œ๋Š” ๋†’์€ ํšจ์œจ๊ณผ ๊ตฌ๋™ ์•ˆ์ •์„ฑ์ด๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ์œ ๊ธฐ๋ฌผ์€ ๋„“์€ ๋ฐœ๊ด‘์ŠคํŽ™ํŠธ๋Ÿผ์„ ๋ณด์ด๊ธฐ ๋•Œ๋ฌธ์—, ์œ ๊ธฐ ๋ฐœ๊ด‘์†Œ์ž๋Š” ์—ฐ์ƒ‰์„ฑ์ด ๋†’์€ ์กฐ๋ช…์œผ๋กœ ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ, ๊ด‘ํ•™ ๊ณต์ง„ ๊ตฌ์กฐ ์ตœ์ ํ™”๋ฅผ ํ†ตํ•ด ๋†’์€ ์ƒ‰์ˆœ๋„์˜ ๋””์Šคํ”Œ๋ ˆ์ด๋กœ๋„ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ์œ ๊ธฐ ๋ฐœ๊ด‘์†Œ์ž๊ฐ€ ๋ฐฉ์ถœํ•œ ๊ด‘์ž์˜ ์ ˆ๋ฐ˜ ์ด์ƒ์€ ๋†’์€ ๊ตด์ ˆ๋ฅ ์˜ ์œ ๊ธฐ๋ฌผ ๋ฐ ๊ธฐํŒ์œผ๋กœ ์ธํ•œ ๋‚ด๋ถ€ ์ „๋ฐ˜์‚ฌ๋กœ ์†Œ๋ฉธ๋œ๋‹ค. ๋”ฐ๋ผ์„œ, ์œ ๊ธฐ ๋ฐœ๊ด‘์†Œ์ž์˜ ํšจ์œจ์„ ์˜ฌ๋ฆฌ๊ณ  ์ „๋ ฅ ์†Œ๋ชจ๋ฅผ ๊ฐ์†Œ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ๊ด‘์ถ”์ถœ ๊ธฐ์ˆ ์€ ํ•„์š”ํ•˜๋‹ค. ์ด์— ๋”๋ถˆ์–ด, ์œ„์—์„œ ์–ธ๊ธ‰ํ•œ ๋ฐ”์™€ ๊ฐ™์ด ์†Œ์ž์˜ ๊ตฌ๋™์‹œ๊ฐ„์— ๋Œ€ํ•œ ๊ณ ๋ ค๋„ ํ•„์š”ํ•˜๋‹ค. ์œ ๊ธฐ ๋ฐœ๊ด‘์†Œ์ž์˜ ์งง์€ ๊ตฌ๋™ ์ˆ˜๋ช…์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋Š” ๋งŽ์ด ์žˆ๊ณ , ๋ช‡๋ช‡ ๋ฉ”์ปค๋‹ˆ์ฆ˜์ด ๋ฐœํ‘œ๋˜์—ˆ์ง€๋งŒ, ์•„์ง ์†Œ์ž ์—ดํ™”์˜ ์ „๋ฐ˜์„ ์„ค๋ช…ํ•  ์ˆ˜ ์žˆ๋Š” ์ด๋ก ์€ ์ „๋ฌดํ•˜๋‹ค. ๊ทธ๋Ÿผ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ๋†’์€ ๊ตฌ๋™ ์•ˆ์ •์„ฑ์„ ์œ„ํ•ด์„  ์œ ๊ธฐ ๋ฐœ๊ด‘์†Œ์ž๋ฅผ ๊ตฌ์„ฑํ•˜๋Š” ์ธต์˜ ์•ˆ์ •์„ฑ์„ ๊ณ ๋ คํ•ด์•ผ ํ•˜๋Š” ๊ฒƒ์€ ์ž๋ช…ํ•˜๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ 2 ๊ฐ€์ง€ ์—ฐ๊ตฌ์ฃผ์ œ: (1) ๋‹จ์ˆœํ•˜๋ฉด์„œ๋„ ํšจ์œจ์ ์ธ ์กฐ๋ช…์šฉ ๊ทธ๋ฆฌ๊ณ  ๋””์Šคํ”Œ๋ ˆ์ด์šฉ ๊ด‘์ถ”์ถœ ๊ตฌ์กฐ, ๊ทธ๋ฆฌ๊ณ  (2) ์ž๋ฐœ์  ๋ฐฐํ–ฅ ๋ถ„๊ทน ๋ถ„์ž๋ฅผ ํ™œ์šฉํ•œ ์†Œ์ž์˜ ์ˆ˜๋ช… ํ–ฅ์ƒ์— ๋Œ€ํ•œ ๋‚ด์šฉ์„ ๋‹ค๋ฃจ๊ณ  ์žˆ๋‹ค. ์ œ1 ์žฅ์€ ์œ ๊ธฐ ๋ฐœ๊ด‘์†Œ์ž์— ๋Œ€ํ•œ ๊ฐ„๋žตํ•œ ์„œ๋ก ์„ ๋‹ด๊ณ  ์žˆ๋‹ค. ์ œ2 ์žฅ์€ ํŒŒ๋ž€์ƒ‰ ํ•˜๋ถ€ ๋ฐœ๊ด‘ํ˜• ์œ ๊ธฐ ๋ฐœ๊ด‘์†Œ์ž์˜ ์™ธ๋ถ€ ๊ด‘์ถ”์ถœ ํšจ์œจ ํ–ฅ์ƒ์„ ์œ„ํ•œ ์†์‰ฌ์šฐ๋ฉด์„œ๋„ ํšจ์œจ์ ์ธ ๋žœ๋ค ์œ ๊ธฐ ๋งˆ์ดํฌ๋กœ ๊ตฌ์กฐ (DACM)์— ๋Œ€ํ•œ ๋‚ด์šฉ์„ ๋‹ด๊ณ  ์žˆ๋‹ค. TCTA์™€ B4PyMPM ํ˜ผํ•ฉ ์šฉ์•ก์„ ํ•„๋ฆ„์— ๋“œ๋กญ ์บ์ŠคํŒ… ํ›„ UV ๊ฒฝํ™” ์‹œํ‚ค๋ฉด ๋ฌด์ž‘์œ„ ๋ชจ์–‘์˜ ๋งˆ์ดํฌ๋กœ ๊ตฌ์กฐ๋ฌผ์ด ํ˜•์„ฑ๋˜์—ˆ๊ณ , ํšŒ์ ˆ ๋ฌด๋Šฌ๊ฐ€ ์—†์–ด ๊ด‘์ถ”์ถœ๋กœ ์ ํ•ฉํ–ˆ๋‹ค. DACM ํ•„๋ฆ„์„ ๋ถ€์ฐฉํ•œ ์†Œ์ž๋Š” 44.3%์˜ ์™ธ๋ถ€ ๊ด‘์ž ํšจ์œจ์„ ๊ฐ€์กŒ๊ณ , ๊ด‘์ถ”์ถœ ๊ตฌ์กฐ๊ฐ€ ์—†๋Š” ์†Œ์ž ํ‰ํŒ ์†Œ์ž ๋Œ€๋น„ 35%์˜ ํ–ฅ์ƒ์„ ๋ณด์˜€๋‹ค. ๋˜ํ•œ, ๋งˆ์ดํฌ๋กœ ๋ Œ์ฆˆ ์–ด๋ ˆ์ด ํ•„๋ฆ„์— ํ–ฅ์ƒ๋Ÿ‰์ธ 22% ๋ณด๋‹ค ๋†’์€ ์ˆ˜์น˜๋ฅผ ๊ธฐ๋กํ–ˆ๋‹ค. ์ด ๊ตฌ์กฐ๋Š” ๊ธฐํŒ์— ์ƒ๊ด€์—†์ด ๋Œ€๋ฉด์  ๊ณต์ •์ด ๊ฐ€๋Šฅํ•˜๊ณ , ์ €๋ ดํ•œ ์ œ์ž‘ ๊ณต์ •, ํด๋กœ๋กœํฌ๋ฆ„๊ณผ ๊ฐ™์€ ์•Œํ‚ฌ ํ• ๋ผ์ด๋“œ ์šฉ๋งค์— ๊ฐ•ํ–ˆ์œผ๋ฉฐ, ๊ตฌ์กฐ ์ปจํŠธ๋กค๋„ ๊ฐ€๋Šฅํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์กฐ๋ช…์šฉ์œผ๋กœ ๋งค์šฐ ํšจ์œจ์ ์ด๊ณ , ๋””์Šคํ”Œ๋ ˆ์ด์šฉ์œผ๋กœ ํ™œ์šฉ๋  ์ž ์žฌ๋ ฅ์ด ์žˆ๋‹ค. ์ œ3 ์žฅ์€ ์ง„๊ณต ์—ด์ฆ์ฐฉ์„ ํ†ตํ•ด ์†์ƒ ์—†์ด ํ˜•์„ฑํ•œ ์ƒ๋ถ€ ๋ฐœ๊ด‘ํ˜• ์œ ๊ธฐ ๋ฐœ๊ด‘์†Œ์ž์šฉ ๊ด‘์ถ”์ถœ ๊ตฌ์กฐ์— ๋Œ€ํ•œ ๋‚ด์šฉ์„ ๋‹ด๊ณ  ์žˆ๋‹ค. ์ƒ๋ถ€ ๋ฐœ๊ด‘ํ˜• ์†Œ์ž๋Š” ๋†’์€ ํ”ฝ์…€ ์ข…ํšก๋น„, ํ๋ ค์ง ์—†๋Š” ์ด๋ฏธ์ง•, ๋†’์€ ์ƒ‰ ์ˆœ๋„๋กœ ์ธํ•ด ์†Œํ˜• ๋””์Šคํ”Œ๋ ˆ์ด์— ํ™œ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ, ์ด๋Ÿฌํ•œ ์ด์ ์„ ์–ป๋Š” ๊ฐ•๊ณต์ง„ ๊ตฌ์กฐ๋Š” ๊ธˆ์† ์ „๊ทน์— ์˜ํ•œ ๋†’์€ ๊ด‘ํ•™ ์†์‹ค์„ ์•ผ๊ธฐํ•œ๋‹ค. ๊ฒŒ๋‹ค๊ฐ€ ์ƒ๋ถ€ ๋ฐœ๊ด‘ํ˜• ์†Œ์ž์—๋Š” ๋น›์˜ ๊ฒฝ๋กœ์— ๊ธฐํŒ์ด ์—†๋Š” ๊นŒ๋‹ญ์— ์†์ƒ ์—†๋Š” ๊ณต์ •์ด ์–ด๋ ต๋‹ค. ์šฐ๋ฆฌ๋Š” 1,5-diaminoanthraquinone (DAAQ) ์œ ๊ธฐ๋ฌผ์˜ ์ง„๊ณต ์—ด์ฆ์ฐฉ์„ ํ†ตํ•ด ์ƒ๋ถ€ ๋ฐœ๊ด‘ํ˜• ์†Œ์ž์˜ ์€ (Ag) ๋ฐ•๋ง‰ ์œ„์— ์†์ƒ ์—†์ด ๊ด‘์ถ”์ถœ ๊ตฌ์กฐ๋ฅผ ํ˜•์„ฑํ–ˆ๋‹ค. DAAQ๋Š” ์€ ๋ฐ•๋ง‰ ์œ„์—์„œ ์ฆ์ฐฉ ์ฆ‰์‹œ ๊ฒฐ์ •ํ™”๋˜์—ˆ์œผ๋ฉฐ, ๊ธฐํŒ์— ์ˆ˜์ง ๋ฐฉํ–ฅ์œผ๋กœ ๋‚˜๋…ธ์™€์ด์–ด๋ฅผ ํ˜•์„ฑํ–ˆ๋‹ค. ๋‚˜๋…ธ์™€์ด์–ด ์–ด๋ž˜์ด์˜ ๋†’์ด, ๋‘˜๋ ˆ, ๊ทธ๋ฆฌ๊ณ  ์ฃผ๊ธฐ๋Š” ์ฆ์ฐฉ ์†๋„ ๋ฐ ๋‘๊ป˜๋กœ ์กฐ์ ˆ ๊ฐ€๋Šฅํ–ˆ๋‹ค. ์ด๋ฅผ ์ƒ๋ถ€ ๋ฐœ๊ด‘ํ˜• ์†Œ์ž์— ์ ‘๋ชฉ์‹œ์ผฐ๊ณ , ์ข์€ ๋ฐ˜์น˜ํญ์˜ ์†Œ์ž์—์„œ๋Š” 8.6%, ๋„“์€ ๋ฐ˜์น˜ํญ์˜ ์†Œ์ž์—์„œ๋Š” 10.6%์˜ ํ–ฅ์ƒ๋Ÿ‰์„ ์–ป์—ˆ๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ์‰ฌ์šฐ๋ฉฐ, ์†Œ์ž์— ์†์ƒ์„ ์ฃผ์ง€ ์•Š์•„ ์—ดํ™” ์‹œํ‚ค์ง€ ์•Š์œผ๋ฉฐ, ํŒจํ„ฐ๋‹ ๊ณต์ •์ด ํ•„์š” ์—†๊ณ , ์ง„๊ณต๊ณต์ •์ด ๊ฐ€๋Šฅํ•œ ๊นŒ๋‹ญ์— ๋งค์šฐ ์œ ์šฉํ•˜๋‹ค. ์ œ4 ์žฅ์€ ๋‚ด๋ถ€ ๊ด‘์ถ”์ถœ ๊ตฌ์กฐ์˜ ํŒจํ„ฐ๋‹ ํŠน์„ฑ์˜ ์ค‘์š”์„ฑ์— ๋Œ€ํ•ด ์„œ์ˆ ํ•œ๋‹ค. ๋‚ด๋ถ€ ๊ด‘์ถ”์ถœ ๊ตฌ์กฐ๋ฅผ ๋””์Šคํ”Œ๋ ˆ์ด์— ํ™œ์šฉํ•˜๊ธฐ ์œ„ํ•ด์„  ๋ฐ•๋ง‰ ํŠธ๋žœ์ง€์Šคํ„ฐ (TFT) ์™€ ์œ ๊ธฐ ๋ฐœ๊ด‘์†Œ์ž ์ „๊ทน ์‚ฌ์ด์— ์‹ ํ˜ธ๋ฅผ ์ฃผ๊ณ ๋ฐ›์„ ์ˆ˜ ์žˆ๋Š” ํ†ต๋กœ, ์ฆ‰ ๋น„์•„ํ™€ (viahole) ์ด ํ•„์š”ํ•˜๋‹ค. ๋‚ด๋ถ€ ๊ด‘์ถ”์ถœ ๊ตฌ์กฐ๋Š” ์œ„์น˜๊ฐ€ ๋ฐ•๋ง‰ ํŠธ๋žœ์ง€์Šคํ„ฐ์™€ ์œ ๊ธฐ ๋ฐœ๊ด‘์†Œ์ž ์‚ฌ์ด์— ์œ„์น˜ํ•œ ๊นŒ๋‹ญ์—, ๊ตฌ์กฐ ์„ค๊ณ„ ์‹œ viahole ํŒจํ„ฐ๋‹์„ ๊ณ ๋ คํ•ด์•ผ ํ•˜์ง€๋งŒ, ์ง€๊ธˆ๊นŒ์ง€ ์ด๋Ÿฐ ๊ณ ๋ ค๋Š” ์ ์—ˆ๋‹ค. ๋˜ํ•œ, ์ผ๋ฐ˜์ ์ธ ๋‚ด๋ถ€ ๊ด‘์ถ”์ถœ๊ตฌ์กฐ๋Š” ๊ณ  ๊ตด์ ˆ ๋ฌผ์งˆ ๋‚ด์—, ๋‚ฎ์€ ๊ตด์ ˆ๋ฅ ์˜ ๊ด‘ ๊ฒฐ์ •์ด ์œ„์น˜ํ•˜๋Š”๋ฐ, ์ด์ข…์˜ ๋ฌผ์งˆ์€ ์‹๊ฐ ์šฉ์•ก์— ๋Œ€ํ•ด ์„œ๋กœ ๋‹ค๋ฅธ ์—์นญ ์„ ํƒ๋น„ (etching selectivity)๋ฅผ ๊ฐ–๊ธฐ ๋•Œ๋ฌธ์—, ๋‚ด๋ถ€ ๊ด‘์ถ”์ถœ๊ตฌ์กฐ์˜ ์†์ƒ ์—†์ด ํŒจํ„ฐ๋‹์ด ๊ฐ€๋Šฅํ•œ ์‹๊ฐ ์šฉ์•ก์„ ์ฐพ๋Š” ๊ฒƒ ๋˜ํ•œ ํ•„์š”ํ•˜๋‹ค. ์šฐ๋ฆฌ๋Š” SiOx ์Šค์บํ„ฐ์™€ TiO2 ํ‰ํƒ„์ธต์„ ๊ฐ–๋Š” ๋‚ด๋ถ€ ๊ด‘์ถ”์ถœ ๊ตฌ์กฐ์˜ ๋น„์•„ํ™€ ํŒจํ„ฐ๋‹์„ ์„ฑ๊ณต์ ์œผ๋กœ ๊ตฌํ˜„ํ•œ ์†Œ์ž๋ฅผ ๋ณด๊ณ ํ•œ๋‹ค. SiOx์™€ TiO2์— ๋Œ€ํ•ด ์œ ์‚ฌํ•œ ์—์นญ ์„ ํƒ๋น„๋ฅผ ๊ฐ–๋Š” buffered oxide etchant (BOE) ์™€ ์ธ์‚ฐ (H3PO4) ์˜ ํ˜ผํ•ฉ ์‹๊ฐ ์šฉ์•ก์„ ํ™œ์šฉํ•ด ์–ธ๋”์ปท (undercut) ๋ฌธ์ œ๊ฐ€ ํ•ด๊ฒฐ๋œ ๋น„์•„ํ™€ ํŒจํ„ฐ๋‹ ๊ณต์ •์„ ํ™•๋ฆฝํ–ˆ์œผ๋ฉฐ, ์ œ์ž‘๋œ ์œ ๊ธฐ ๋ฐœ๊ด‘์†Œ์ž์˜ ๋‚ฎ์€ ๋ˆ„์„ค ์ „๋ฅ˜ ๋ฐ ์†์ƒ ์—†๋Š” ๊ด‘์ถ”์ถœ ํšจ์œจ์„ ํ†ตํ•ด ๋น„์•„ํ™€ ํŒจํ„ฐ๋‹์ด ์„ฑ๊ณต์ ์œผ๋กœ ๋˜์—ˆ์Œ์„ ์‹คํ—˜์ ์œผ๋กœ ๋ณด์˜€๋‹ค. ์ œ5์žฅ์€ ์ „์ž ์ „๋‹ฌ์ธต (Electron transporting layer, ETL) ์˜ ์•ˆ์ •์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ๋ฐฉ๋ฒ•์„ ๋‹ด๊ณ  ์žˆ๋‹ค. ์˜๊ตฌ ์Œ๊ทน์ž ๋ชจ๋ฉ˜ํŠธ (permanent dipole moment)์˜ ์ •๋ ฌ์ด ๋น„์ •์งˆ์˜ Alq3 ์œ ๊ธฐ๋ฌผ์—์„œ๋„ ๋ฐœํ˜„๋จ์„ ๋ฐœ๊ฒฌํ•œ ์ดํ›„, ์—ฌ๋Ÿฌ ์ „์ž์ „๋‹ฌ๋ฌผ์งˆ์—์„œ ์ด๋Ÿฌํ•œ ํŠน์„ฑ (๋ฐฐํ–ฅ ๋ถ„๊ทน, orientation polarization)์ด ๋‚˜ํƒ€๋‚จ์ด ๋ฐํ˜€์กŒ๋‹ค. ์ง€๊ธˆ๊นŒ์ง„ ๋ฐฐํ–ฅ ๋ถ„๊ทน์ด ์†Œ์ž์˜ ์ „๊ธฐ์  ํŠน์„ฑ์— ์–ด๋–ป๊ฒŒ ์˜ํ–ฅ์„ ๋ผ์น˜๋Š”์ง€์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ์ฃผ๋ฅ˜๋ฅผ ์ด๋ค˜๋‹ค. ํ•˜์ง€๋งŒ ์šฐ๋ฆฌ๋Š” ๋ฐฐํ–ฅ ๋ถ„๊ทน์ด ์œ ๊ธฐ ๋ฐœ๊ด‘์†Œ์ž์˜ ์ˆ˜๋ช…์— ์–ด๋–ค ์˜ํ–ฅ์„ ์ฃผ๋Š”์ง€ ๋ฐํ˜”๋‹ค. ์†Œ์ž์˜ ์—๋„ˆ์ง€ ์ „๋‹ฌ ๊ณผ์ •์— ์ฐธ์—ฌํ•˜์ง€ ์•Š๋Š” BAlq ๋ถ„์ž๋ฅผ ํ™œ์šฉํ•ด ์ „์ž ์ „๋‹ฌ์ธต๊ณผ ๋ฐœ๊ด‘์ธต (EML) ์‚ฌ์ด์— ์Œ์˜ ํ‘œ๋ฉด ์ „ํ•˜ ๋ฐ€๋„๋ฅผ ๋†’ํ˜”์„ ๋•Œ, ์†Œ์ž์˜ ๊ตฌ๋™ ์ˆ˜๋ช…์ด ์ฆ๊ฐ€ํ•จ์„ ๋ณด์˜€๋‹ค. ๋˜ํ•œ ๋ฌผ์งˆ์˜ ์—ดํ™” ์ •๋„๋ฅผ ํŒŒ์•…ํ•  ์ˆ˜ ์žˆ๋Š” ์ „์•• ๋ณ€ํ™”๊ฐ€ ๋‚ฎ์•„์ง์„ ํ†ตํ•ด BAlq์— ์˜ํ•œ ํ‘œ๋ฉด์ „ํ•˜ ๋ณ€ํ™”๊ฐ€ ์ „์ž์ „๋‹ฌ์ธต์˜ ์•ˆ์ •์„ฑ์„ ์˜ฌ๋ฆผ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ ๋ถ„๊ทน๋œ ์ธต์ด ๋ฐœ๊ด‘์ธต๊ณผ์˜ ๊ณ„๋ฉด์— ์œ„์น˜ํ•  ๊ฒฝ์šฐ์—์„œ๋งŒ ์ˆ˜๋ช…์ด ์ฆ๊ฐ€ํ•˜๋Š” ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด ์ •๊ณต ์ฐจ๋‹จ์ธต (hole blocking layer, HBL) ์ด ์Œ์˜ ํ‘œ๋ฉด ์ „ํ•˜๋ฅผ ๋ฐœ๊ด‘์ธต๊ณผ์˜ ๊ณ„๋ฉด์— ๊ฐ€์งˆ ๊ฒฝ์šฐ, ํ–ฅ์ƒ๋œ ์ˆ˜๋ช…์„ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒฐ๋ก ์„ ์–ป์—ˆ์œผ๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ๋ถ„์ž์˜ ๋ฐฐํ–ฅ ๋ถ„๊ทน ํŠน์„ฑ๋„ ์†Œ์ž์˜ ์ˆ˜๋ช…ํ–ฅ์ƒ์„ ์œ„ํ•ด ๊ณ ๋ คํ•ด์•ผ ํ•จ์„ ๋ณด์˜€๋‹ค.Chapter 1. Introduction 2 1.1 Brief history of Organic Light-Emitting Diodes (OLEDs) 2 1.2 Efficiency of OLEDs 10 1.3 Light extraction methods for OLEDs 16 1.4 Finite difference time domain (FDTD) method 24 1.5 Operational stability of OLEDs 26 1.6 Outline of the thesis 28 Chapter 2. Random Organic Nano-textured Microstructures by Photo-Induced Crosslinking for Light Extraction of Blue OLEDs 31 2.1 Introduction 31 2.2 Experimental section 34 2.3 Results and Discussion 36 2.4 Conclusion 57 Chapter 3. Random Nanowire Arrays Spontaneously Formed via Vacuum Deposition for Enhancing Light Extraction from Inverted Top-Emitting Organic Light-Emitting Diodes 59 3.1 Introduction 59 3.2 Experimental section 62 3.3 Results and Discussion 65 3.4 Conclusion 77 Chapter 4. Via Hole Patterning of Light Extraction Layer for Electrical Connection 78 4.1 Introduction 78 4.2 Experimental section 80 4.3 Results and Discussion 83 4.4 Conclusion 92 Chapter 5. Improving Operation Lifetime of OLEDs using Spontaneous Orientation Polarization 93 5.1 Introduction 93 5.2 Experimental section 97 5.3 Results and Discussion 99 5.4 Conclusion 124 Chapter 6. Summary and Conclusion 125 Bibliography 128 ์ดˆ ๋ก 142 CURRICULUM VITAE 147 List of Publications 149 List of Presentations 151Docto

    Efficiency Improvement of Organic Light-Emitting Diodes: Development of Novel Fabrication and Optical Evaluation Concepts

    Get PDF
    Organic Light-Emitting Diodes (OLEDs) currently advance in the display market due to their unique image quality. Innovations profit from further extraordinary properties such as mechanical flexibility, optical transparency and large area coverage. Despite considerable progress in development, high costs and moderate efficiencies hamper the entry into the lighting market. However, there still is enormous potential for efficiency improvement. Current problems are the work-intensive search for best material combinations and large amounts of trapped light in the flat OLED geometry. This thesis develops novel concepts for improving the efficiency of OLEDs: An optimized fabrication, a systematic evaluation of light outcoupling structures by proposing a new metric, and an examination of efficiency limitations with optical simulations to identify options for action. The optimization of OLEDs is closely related to the properties of the individual molecules, while the fabrication process is often neglected. However, literature has shown that vapor deposited organic glasses can exhibit extraordinary high stabilities when fabricated at the right conditions. The substrate temperature is therefore set to 85 % of the materials conventional glass transition temperature Tg while the deposition rates are kept below < 0.1 nm/s. This concept is adapted and the glass forming molecule TPBi is fabricated as stable host and electron transporter in a simple OLED. Efficiency and lifetime improvement could be achieved with four different phosphorescent emitters. For Ir(ppy)2(acac) the External Quantum Efficiency (EQE) at 100 cd/mยฒ is enhanced from 19.4 to 24.0 % and the lifetime LT 70 at 1,000 cd/mยฒ from 14.8 to 74.2 h, i.e. the time in which the initial luminance drops to 70 % is five times higher. The origin is found in improved radiative and electrical efficiency. This fabrication concept enables an additional optimization path besides material development. Next, the high refractive index of organic materials lead to light confinement through total internal reflection. Many light outcoupling strategies have been developed, but their direct comparison is difficult through the diversity of used structures and OLEDs. This thesis proposes a new efficiency metric, the Efficiency of Light Outcoupling Structures (ELOS), that states the effectiveness of a light outcoupling structure. It weights experimental efficiency enhancement to theoretically maximal gain that is simulated. It was found that a glass half-sphere extracts about 80 % photons from the OLED substrate, while a combination of a diffraction grating with the half-sphere extracts at best 43 % from the whole OLED. The corresponding EQEs are 32.5 % and 36.5 %. The ELOS promotes a systematic search for a universally efficient light outcoupling structures, because it removes misinterpretation through the specifically used OLED. Lastly, optical investigations have found the following statements for bottom-emitting OLEDs: Highest EQEs with external light outcoupling structures are reached for 3/4 ฮป cavities. EQEs of more than 90 % could be reached with a low refractive index electron transport layer in combination with a high refractive index substrate and ideal external light outcoupling. For top-emitting OLEDs, the thin film interference can be exploited to shift the emission color of sky-blue emitter towards blue. Commission Internationale de lโ€™ร‰clairage (CIE) color coordinates of (0.127/0.168) could experimentally be achieved with an emitter that has (0.213/0.374). The color tuning reduces EQE, but therefore exploits higher lifetimes of sky-blue emitters. This opens an alternative to reach deep blue emission besides material development, which is a current challenge for displays.Organische Leuchtdioden (OLEDs) etablieren sich derzeit im Display-Markt aufgrund ihrer einzigartigen Bildqualitรคt. Innovationen profitieren zudem von weiteren auรŸergewรถhnlichen Eigenschaften wie z.B. mechanische Flexibilitรคt, optische Transparenz und GroรŸflรคchigkeit. Obwohl es bereits betrรคchtliche Weiterentwicklungen gab, erschweren hohe Kosten und moderate Effizienzen den Markteintritt in den Beleuchtungssektor. Dabei gibt es noch enormes Potential fรผr Effizienzsteigerungen. Derzeitige Probleme sind die aufwรคndige Suche nach den besten Material(-kombinationen) und groรŸe Verluste durch Licht, welches im flachen Bauteil verbleibt. In dieser Dissertation werden deshalb neuartige Konzepte entwickelt, um die Effizienzsteigerung voranzutreiben: Eine optimierte Herstellung, eine systematische Untersuchung von Lichtauskoppelstrukturen mittels einer neuen Metrik und die Untersuchung von Effizienzlimitierungen mithilfe von optischen Simulationen, um weitere Mรถglichkeiten zur Verbesserung zu identifizieren. Die Optimierung von OLEDs ist eng verbunden mit der Materialsuche, wobei der Herstellungsprozess oft vernachlรคssigt wird. Allerdings konnte in der Literatur gezeigt werden, dass aufgedampfte organische Glรคser auรŸergewรถhnlich stabil sein kรถnnen, wenn die Herstellungsbedingungen optimiert werden. Dafรผr muss die Substrattemperatur auf etwa 85 % der gewรถhnlichen Glasรผbergangstemperatur Tg gesetzt werden, wรคhrend das Material mit niedrigen Raten von < 0,1 nm/s aufgetragen wird. Dieses Konzept wird รผbernommen fรผr das Glasformer Molekรผl TPBi, welches als stabile Matrix und Elektronentransporter in einer einfachen OLED realisiert wird. Damit wird eine Effizienz- und Lebensdauerverbessung fรผr vier phosphoreszente Emittermolekรผle erreicht. Fรผr Ir(ppy)2(acac) wird die externe Quanteneffizienz (EQE) bei 100 cd/mยฒ von 19,4 auf 24,0 % erhรถht und die Lebensdauer LT 70 bei 1000 cd/mยฒ von 14,8 auf 74,2 h, d.h. die Zeit, bis die ursprรผngliche Helligkeit auf 70 % fรคllt, wird verfรผnffacht. Ursache dafรผr ist eine verbesserte elektrische Effizienz und Strahlungseffizienz. Diese Herstellungsoptimierung erรถffnet neben der Materialsuche eine weitere Mรถglichkeit fรผr OLED Verbesserungen. Weiterhin fรผhrt der hohe Brechungsindex organischer Materialien zu Lichteinschluss im Bauteil durch totale interne Reflexion. Um zusรคtzliches Licht zu extrahieren, wurden viele Lichtauskoppelstrukturen entwickelt, welche sich jedoch aufgrund der Vielfalt der Strukturen und OLEDs nur schwer vergleichen lassen. Diese Arbeit schlรคgt eine neue EffizienzgrรถรŸe vor, die sogenannte Effizienz von Lichtauskoppelstrukturen (ELOS), welche die Effektivitรคt von den Strukturen angibt. Sie vergleicht die experimentell bestimmte mit der maximal erwartbaren Verbesserung, welche mit optischen Simulationen berechnet wird. Damit konnte gezeigt werden, dass eine Glashalbkugel etwa 80 % aller Photonen vom OLED Substrat extrahiert, wรคhrend eine Kombination von Streugittern mit Glashalbkugel bestenfalls 43 % der verbleibenden Photonen in der gesamten OLED extrahiert. Die jeweiligen EQEs sind 32,5 % und 36,5 %. Die ELOS fรถrdert eine systematische Suche nach den universell am besten funktionierenden Lichtauskoppelstrukturen, weil Missinterpretationen durch die jeweilig verwendeten OLEDs verringert werden. Letztendlich haben die optischen Untersuchungen folgende Aussagen fรผr bottom emittierenden OLEDs gefunden: Die hรถchste EQE mit externen Lichtauskoppelstrukturen werden mit 3/4 ฮป Kavitรคten erreicht. EQEs von mehr als 90 % kรถnnten erreicht werden durch Kombination von niedrigbrechenden Elektronentransportschichten, hochbrechenden Substraten und idealen Lichtauskoppelstrukturen. Fรผr top emittierende OLEDs kann Dรผnnschichtinterferenz ausgenutzt werden, um die Farbe von himmelblauen Emittern zu tiefblau zu verschieben. CIE Farbkoordinaten von (0.127/0.168) konnten experimentell erreicht werden mit einem Emitter von (0.213/0.374). Die Farbverschiebung verringert zwar die EQE, allerdings kann so die hรถhere Lebensdauer von himmelblauen Emittern ausgenutzt werden. Damit wird eine Alternative zur Materialsuche geschaffen, um tiefblaue Farbe zu erreichen, was eine derzeitige Herausforderung fรผr Displays ist

    Top-Emitting OLEDs: Improvement of the Light Extraction Efficiency and Optimization of Microcavity Effects for White Emission

    Get PDF
    In the last decades, investigations of organic light-emitting diodes (OLEDs) have tackled several key challenges of this lighting technology and have brought the electron to photon conversion efficiency close to unity. However, currently only 20% to 30% of the photons can typically be extracted from OLED structures, as total internal reflection traps the major amount of the generated light inside the devices. This work focuses on the optimization of the optical properties of top-emitting OLEDs, in which the emission is directed away from the substrate. In this case, opaque materials, e.g. a metal foil or a display backplane can be used as substrate as well. Even though top-emitting OLEDs are often preferred for applications such as displays, two main challenges remain: the application of light extraction structures and the deposition of highly transparent materials as top electrode, without harming the organic layers below. Both issues are addressed in this work. First, top-emitting OLEDs are deposited on top of periodically corrugated light outcoupling structures, in order to extract internally trapped light modes by Bragg scattering and to investigate the basic scattering mechanisms in these devices. It is shown for the first time that the electrical performance is maintained in corrugated top-emitting OLEDs deposited on top of light extraction structures. Furthermore, as no adverse effects to the internal quantum efficiency have been observed, the additional emission from previously trapped light modes directly increases the device efficiency. It has been proven that the spectral emission of corrugated OLEDs is determined by the interference of all light modes inside the air light-cone, including the observation of destructive interference and anti-crossing phenomena. The formation of a coherently coupled mode pair of the initial radiative cavity mode and a Bragg scattered mode has been first observed, when grating structures with an aspect ratio > 0.2 are applied. There, the radiative cavity mode partially vanishes. The observation and analysis of such new emission phenomena in corrugated top-emitting OLEDs has been essential in obtaining a detailed insight on fundamental scattering processes as well as for the optimization and control of the spectral emission by light extraction structures. Second, the adverse impact of using only moderately transparent silver electrodes in white top-emitting OLEDs has been compensated improving the metal film morphology, as the organic materials often prevent a replacement by state-of-the-art electrodes, like Indium-tin-oxide (ITO). A high surface energy Au wetting layer, also in combination with MoO3, deposited underneath the Ag leads to smooth, homogeneous, and closed films. This allows to decrease the silver thickness from the state-of-the-art 15 nm to 3 nm, which has the advantage of increasing the transmittance significantly while maintaining a high conductivity. Thereby, a transmittance comparable to the ITO benchmark has been reached in the wavelength regime of the emitters. White top-emitting OLEDs using the wetting layer electrodes outperform state-of-the art top-emitting devices with neat Ag top electrodes, by improving the angular colorstability, the color rendering, and the device efficiency, further reaching sightly improved characteristics compared to references with ITO bottom electrode. The enormous potential of wetting layer metal electrodes in improving the performance of OLEDs has been further validated in inverted top-emitting devices, which are preferred for display applications, as well as transparent OLEDs, in which the brittle ITO electrode is replaced by a wetting layer electrode. Combining both concepts, wetting layer electrodes and light extraction structures, allows for the optimization of the grating-OLED system. The impact of destructive mode interference has been reduced and thus the efficiency increased by a decrease of the top electrode thickness, which would have not been achieved without a wetting layer. The optimization of corrugated white top-emitting OLEDs with a top electrode of only 2 nm gold and 7 nm silver on top of a grating with depth of 150 nm and period of 0.8 ยตm have yielded a reliable device performance and increased efficiency by a factor of 1.85 compared to a planar reference (5.0% to 9.1% EQE at 1000 cd/m2). This enhancement is comparable to common light extraction structures, such as half-sphere lenses or microlens foils, which are typically restricted to bottom-emitting devices. Overall, the deposition of top-emitting OLEDs on top of light extraction structures finally allow for an efficient extraction of internally trapped light modes from these devices, while maintaining a high device yield. Finally, the investigations have resulted in a significant efficiency improvement of top-emitting OLEDs and the compensation of drawbacks (optimization of the white light emission and the extraction of internal light modes) in comparison to the bottom-emitting devices. The investigated concepts are beneficial for OLEDs in general, since the replacement of the brittle ITO electrodes and the fabrication of roll-to-roll processing compatible light extraction structures are also desirable for bottom-emitting, or transparent OLEDs
    • โ€ฆ
    corecore