562 research outputs found

    A numerical study on active control for tiltrotor whirl flutter stability augmentation

    Get PDF
    The use of active control to augment whirl flutter stability of tiltrotor aircraft is studied by means of a multibody simulation. The numerical model is based on a 1/5 scale semi-span aeroelastic wind tunnel model of a generic tiltrotor concept and possesses a gimballed, stiff-in-plane rotor that is windmilling. A single-input single-output controller and two types of multi-input multi-output algorithms, Linear Quadratic Gaussian Control and Generalized Predictive Control, are studied. They are using measured wing deflections in order to calculate appropriate swashplate input. Results on the closed-loop behavior of three wing and two gimbal natural modes are given. Robustness analyses with respect to major parameters like wing natural frequencies or structural damping are also briefly discussed. The rotor shear force is shown in the uncontrolled condition and in presence of a controller in order to illustrate the whirl flutter mechanism. The single-input single-output controller yielded substantial gain in stability and turned out to be most suitable for industrial application, whereas the Linear Quadratic Gaussian Regulator yielded even higher damping and still had good robustness characteristics

    Stochastic Analysis of the Eigenvalue Problem for Mechanical Systems Using Polynomial Chaos Expansion: Application to a Finite Element Rotor

    Get PDF
    International audienceThis paper proposes to use a polynomial chaos expansion approach to compute stochastic complex eigenvalues and eigenvectors of structures including damping or gyroscopic effects. Its application to a finite element rotor model is compared to Monte Carlo simulations. This lets us validate the method and emphasize its advantages. Three different uncertain configurations are studied. For each, a stochastic Campbell diagram is proposed and interpreted and critical speeds dispersion is evaluated. Furthermore, an adaptation of the Modal Accordance Criterion is proposed in order to monitor the eigenvectors dispersion

    Implications of Motion Planning: Optimality and k-survivability

    Get PDF
    We study motion planning problems, finding trajectories that connect two configurations of a system, from two different perspectives: optimality and survivability. For the problem of finding optimal trajectories, we provide a model in which the existence of optimal trajectories is guaranteed, and design an algorithm to find approximately optimal trajectories for a kinematic planar robot within this model. We also design an algorithm to build data structures to represent the configuration space, supporting optimal trajectory queries for any given pair of configurations in an obstructed environment. We are also interested in planning paths for expendable robots moving in a threat environment. Since robots are expendable, our goal is to ensure a certain number of robots reaching the goal. We consider a new motion planning problem, maximum k-survivability: given two points in a stochastic threat environment, find n paths connecting two given points while maximizing the probability that at least k paths reach the goal. Intuitively, a good solution should be diverse to avoid several paths being blocked simultaneously, and paths should be short so that robots can quickly pass through dangerous areas. Finding sets of paths with maximum k-survivability is NP-hard. We design two algorithms: an algorithm that is guaranteed to find an optimal list of paths, and a set of heuristic methods that finds paths with high k-survivability

    Time-Frequency Analysis Based on Improved Variational Mode Decomposition and Teager Energy Operator for Rotor System Fault Diagnosis

    Get PDF
    A time-frequency analysis method based on improved variational mode decomposition and Teager energy operator (IVMD-TEO) is proposed for fault diagnosis of turbine rotor. Variational mode decomposition (VMD) can decompose a multicomponent signal into a number of band-limited monocomponent signals and can effectively avoid model mixing. To determine the number of monocomponents adaptively, VMD is improved using the correlation coefficient criterion. Firstly, IVMD algorithm is used to decompose a multicomponent signal into a number of monocompositions adaptively. Second, all the monocomponent signals’ instantaneous amplitude and instantaneous frequency are demodulated via TEO, respectively, because TEO has fast and high precision demodulation advantages to monocomponent signal. Finally, the time-frequency representation of original signal is exhibited by superposing the time-frequency representations of all the monocomponents. The analysis results of simulation signal and experimental turbine rotor in rising speed condition demonstrate that the proposed method has perfect multicomponent signal decomposition capacity and good time-frequency expression. It is a promising time-frequency analysis method for rotor fault diagnosis

    Development of modal analysis methodologies for the identification of aerospace structures in operating conditions

    Get PDF
    Operational modal analysis differs from traditional experimental modal analysis in that it only requires information of the output responses and the modal parameters (in terms of natural frequencies damping ratios and mode shapes) are estimated under the assumption of white noise excitation. It presents several advantages including the availability of modal properties of structure in operation thus representing a closer picture of the structure and its boundary conditions (which are not that easy to realize in laboratory conditions). However, lack of input excitation force information presents several challenges as well as the proper estimation of the frequency response functions and the accurate evaluation of modal parameters in presence of harmonic components in the excitation. Several methodologies have been developed in the last years as described in this thesis and the main purpose of the research is to assess their application in aerospace such as the rotorcraft technology and the environmental testing. Solutions to the main operational modal analysis limitations are suggested and the implementation of the related algorithms allows the application on several test cases after their validation. Taking advantages of this improving in the experimental analysis capabilities, a demanding application within the rotorcraft technology is carried out. Starting from the already developed Active Pitch Link prototype (based on the Smart Spring concept), its use for vibration reduction on rotating blade is numerically and experimentally investigated, thanks to the intensive use of the operational modal analysis for the identification of the real system properties that give the necessary information for the tuning of the numerical model, that in turn suggests the operative test conditions

    12th International Conference on Vibrations in Rotating Machinery

    Get PDF
    Since 1976, the Vibrations in Rotating Machinery conferences have successfully brought industry and academia together to advance state-of-the-art research in dynamics of rotating machinery. 12th International Conference on Vibrations in Rotating Machinery contains contributions presented at the 12th edition of the conference, from industrial and academic experts from different countries. The book discusses the challenges in rotor-dynamics, rub, whirl, instability and more. The topics addressed include: - Active, smart vibration control - Rotor balancing, dynamics, and smart rotors - Bearings and seals - Noise vibration and harshness - Active and passive damping - Applications: wind turbines, steam turbines, gas turbines, compressors - Joints and couplings - Challenging performance boundaries of rotating machines - High power density machines - Electrical machines for aerospace - Management of extreme events - Active machines - Electric supercharging - Blades and bladed assemblies (forced response, flutter, mistuning) - Fault detection and condition monitoring - Rub, whirl and instability - Torsional vibration Providing the latest research and useful guidance, 12th International Conference on Vibrations in Rotating Machinery aims at those from industry or academia that are involved in transport, power, process, medical engineering, manufacturing or construction
    corecore