69 research outputs found

    Locating and Detecting Arrays for Interaction Faults

    Get PDF
    The identification of interaction faults in component-based systems has focused on indicating the presence of faults, rather than their location and magnitude. While this is a valuable step in screening a system for interaction faults prior to its release, it provides little information to assist in the correction of such faults. Consequently tests to reveal the location of interaction faults are of interest. The problem of nonadaptive location of interaction faults is formalized under the hypothesis that the system contains (at most) some number d of faults, each involving (at most) some number t of interacting factors. Restrictions on the number and size of the putative faults lead to numerous variants of the basic problem. The relationships between this class of problems and interaction testing using covering arrays to indicate the presence of faults, designed experiments to measure and model faults, and combinatorial group testing to locate faults in a more general testing scenario, are all examined. While each has some definite similarities with the fault location problems for component-based systems, each has some striking differences as well. In this paper, we formulate the combinatorial problems for locating and detecting arrays to undertake interaction fault location. Necessary conditions for existence are established, and using a close connection to covering arrays, asymptotic bounds on the size of minimal locating and detecting arrays are established. A final version of this paper appears in J Comb Optim (2008) 15: 17-48

    Fault Tolerance Framework using Model-Based Diagnosis: Towards Dependable Business Processes

    Get PDF
    Several reports indicate that one of the most important business priorities is the improvement of business and IT management. Management and automation of business processes have become essential tasks within IT organizations. Nowadays, business processes of a organization use external services which are not under our its jurisdiction, and any fault within these processes remain uncontrolled, thereby introducing unexpected faults in execution. Organizations must ensure that their business processes are as dependable as possible before they are automated. Fault tolerance techniques provide certain mechanisms to decrease the risk of possible faults in systems. In this paper, a framework for developing business processes with fault tolerance capabilities is provided. Our framework presents various solutions within the scope of fault tolerance, whereby a practical example has been developed and the results obtained have been compared and discussed. The implemented framework presents innovative mechanisms, based on model-based diagnosis and constraint programming which automate the isolation and identification of faulty components, but it also includes business rules to check the correctness of various parameters obtained in the business process.Junta de Andalucía P08-TIC-04095Ministerio de Educación y Ciencia TIN2009-1371

    Solar Panels String Predictive and Parametric Fault Diagnosis Using Low-Cost Sensors

    Full text link
    [EN] This work proposes a method for real-time supervision and predictive fault diagnosis applicable to solar panel strings in real-world installations. It is focused on the detection and parametric isolation of fault symptoms through the analysis of the Voc-Isc curves. The method performs early, systematic, online, automatic, permanent predictive supervision, and diagnosis of a high sampling frequency. It is based on the supervision of predictive electrical parameters easily accessible by the design of its architecture, whose detection and isolation precedes with an adequate margin of maneuver, to be able to alert and stop by means of automatic disconnection the degradation phenomenon and its cumulative effect causing the development of a future irrecoverable failure. Its architecture design is scalable and integrable in conventional photovoltaic installations. It emphasizes the use of low-cost technology such as the ESP8266 module, ASC712-5A, and FZ0430 sensors and relay modules. The method is based on data acquisition with the ESP8266 module, which is sent over the internet to the computer where a SCADA system (iFIX V6.5) is installed, using the Modbus TCP/IP and OPC communication protocols. Detection thresholds are initially obtained experimentally by applying inductive shading methods on specific solar panels.García Moreno, E.; Ponluisa, N.; Quiles Cucarella, E.; Zotovic Stanisic, R.; Gutiérrez, SC. (2022). Solar Panels String Predictive and Parametric Fault Diagnosis Using Low-Cost Sensors. Sensors. 22(1):1-29. https://doi.org/10.3390/s2201033212922

    Regression test case prioritization by code combinations coverage

    Get PDF
    Regression test case prioritization (RTCP) aims to improve the rate of fault detection by executing more important test cases as early as possible. Various RTCP techniques have been proposed based on different coverage criteria. Among them, a majority of techniques leverage code coverage information to guide the prioritization process, with code units being considered individually, and in isolation. In this paper, we propose a new coverage criterion, code combinations coverage, that combines the concepts of code coverage and combination coverage. We apply this coverage criterion to RTCP, as a new prioritization technique, code combinations coverage based prioritization (CCCP). We report on empirical studies conducted to compare the testing effectiveness and efficiency of CCCP with four popular RTCP techniques: total, additional, adaptive random, and search-based test prioritization. The experimental results show that even when the lowest combination strength is assigned, overall, the CCCP fault detection rates are greater than those of the other four prioritization techniques. The CCCP prioritization costs are also found to be comparable to the additional test prioritization technique. Moreover, our results also show that when the combination strength is increased, CCCP provides higher fault detection rates than the state-of-the-art, regardless of the levels of code coverage

    Degradation Detection in a Redundant Sensor Architecture

    Get PDF
    Safety-critical automation often requires redundancy to enable reliable system operation. In the context of integrating sensors into such systems, the one-out-of-two (1oo2) sensor architecture is one of the common used methods used to ensure the reliability and traceability of sensor readings. In taking such an approach, readings from two redundant sensors are continuously checked and compared. As soon as the discrepancy between two redundant lines deviates by a certain threshold, the 1oo2 voter (comparator) assumes that there is a fault in the system and immediately activates the safe state. In this work, we propose a novel fault prognosis algorithm based on the discrepancy signal. We analyzed the discrepancy changes in the 1oo2 sensor configuration caused by degradation processes. Several publicly available databases were checked, and the discrepancy between redundant sensors was analyzed. An initial analysis showed that the discrepancy between sensor values changes (increases or decreases) over time. To detect an increase or decrease in discrepancy data, two trend detection methods are suggested, and the evaluation of their performance is presented. Moreover, several models were trained on the discrepancy data. The models were then compared to determine which of the models can be best used to describe the dynamics of the discrepancy changes. In addition, the best-fitting models were used to predict the future behavior of the discrepancy and to detect if, and when, the discrepancy in sensor readings will reach a critical point. Based on the prediction of the failure date, the customer can schedule the maintenance system accordingly and prevent its entry into the safe state—or being shut down

    Loss allocation in a distribution system with distributed generation units

    Get PDF
    In Denmark, a large part of the electricity is produced by wind turbines and combined heat and power plants (CHPs). Most of them are connected to the network through distribution systems. This paper presents a new algorithm for allocation of the losses in a distribution system with distributed generation. The algorithm is based on a reduced impedance matrix of the network and current injections from loads and production units. With the algorithm, the effect of the covariance between production and consumption can be evaluated. To verify the theoretical results, a model of the distribution system in Brønderslev in Northern Jutland, including measurement data, has been studied

    Fault tolerant programmable digital attitude control electronics study

    Get PDF
    The attitude control electronics mechanization study to develop a fault tolerant autonomous concept for a three axis system is reported. Programmable digital electronics are compared to general purpose digital computers. The requirements, constraints, and tradeoffs are discussed. It is concluded that: (1) general fault tolerance can be achieved relatively economically, (2) recovery times of less than one second can be obtained, (3) the number of faulty behavior patterns must be limited, and (4) adjoined processes are the best indicators of faulty operation
    corecore