122 research outputs found

    On implicational bases of closure systems with unique critical sets

    Get PDF
    We show that every optimum basis of a finite closure system, in D.Maier's sense, is also right-side optimum, which is a parameter of a minimum CNF representation of a Horn Boolean function. New parameters for the size of the binary part are also established. We introduce a K-basis of a general closure system, which is a refinement of the canonical basis of Duquenne and Guigues, and discuss a polynomial algorithm to obtain it. We study closure systems with the unique criticals and some of its subclasses, where the K-basis is unique. A further refinement in the form of the E-basis is possible for closure systems without D-cycles. There is a polynomial algorithm to recognize the D-relation from a K-basis. Thus, closure systems without D-cycles can be effectively recognized. While E-basis achieves an optimum in one of its parts, the optimization of the others is an NP-complete problem.Comment: Presented on International Symposium of Artificial Intelligence and Mathematics (ISAIM-2012), Ft. Lauderdale, FL, USA Results are included into plenary talk on conference Universal Algebra and Lattice Theory, June 2012, Szeged, Hungary 29 pages and 2 figure

    Unique key Horn functions

    Get PDF
    Given a relational database, a key is a set of attributes such that a value assignment to this set uniquely determines the values of all other attributes. The database uniquely defines a pure Horn function hh, representing the functional dependencies. If the knowledge of the attribute values in set AA determines the value for attribute vv, then AvA\rightarrow v is an implicate of hh. If KK is a key of the database, then KvK\rightarrow v is an implicate of hh for all attributes vv. Keys of small sizes play a crucial role in various problems. We present structural and complexity results on the set of minimal keys of pure Horn functions. We characterize Sperner hypergraphs for which there is a unique pure Horn function with the given hypergraph as the set of minimal keys. Furthermore, we show that recognizing such hypergraphs is co-NP-complete already when every hyperedge has size two. On the positive side, we identify several classes of graphs for which the recognition problem can be decided in polynomial time. We also present an algorithm that generates the minimal keys of a pure Horn function with polynomial delay. By establishing a connection between keys and target sets, our approach can be used to generate all minimal target sets with polynomial delay when the thresholds are bounded by a constant. As a byproduct, our proof shows that the Minimum Key problem is at least as hard as the Minimum Target Set Selection problem with bounded thresholds.Comment: 12 pages, 5 figure

    First-Order Provenance Games

    Full text link
    We propose a new model of provenance, based on a game-theoretic approach to query evaluation. First, we study games G in their own right, and ask how to explain that a position x in G is won, lost, or drawn. The resulting notion of game provenance is closely related to winning strategies, and excludes from provenance all "bad moves", i.e., those which unnecessarily allow the opponent to improve the outcome of a play. In this way, the value of a position is determined by its game provenance. We then define provenance games by viewing the evaluation of a first-order query as a game between two players who argue whether a tuple is in the query answer. For RA+ queries, we show that game provenance is equivalent to the most general semiring of provenance polynomials N[X]. Variants of our game yield other known semirings. However, unlike semiring provenance, game provenance also provides a "built-in" way to handle negation and thus to answer why-not questions: In (provenance) games, the reason why x is not won, is the same as why x is lost or drawn (the latter is possible for games with draws). Since first-order provenance games are draw-free, they yield a new provenance model that combines how- and why-not provenance

    Optimum basis of finite convex geometry

    Get PDF
    Convex geometries form a subclass of closure systems with unique criticals, or UC-systems. We show that the F-basis introduced in [6] for UC- systems, becomes optimum in convex geometries, in two essential parts of the basis: right sides (conclusions) of binary implications and left sides (premises) of non-binary ones. The right sides of non-binary implications can also be optimized, when the convex geometry either satis es the Carousel property, or does not have D-cycles. The latter generalizes a result of P.L. Hammer and A. Kogan for acyclic Horn Boolean functions. Convex geometries of order convex subsets in a poset also have tractable optimum basis. The problem of tractability of optimum basis in convex geometries in general remains to be ope
    corecore