28 research outputs found

    Time-triggering versus event-triggering control over communication channels

    Full text link
    Time-triggered and event-triggered control strategies for stabilization of an unstable plant over a rate-limited communication channel subject to unknown, bounded delay are studied and compared. Event triggering carries implicit information, revealing the state of the plant. However, the delay in the communication channel causes information loss, as it makes the state information out of date. There is a critical delay value, when the loss of information due to the communication delay perfectly compensates the implicit information carried by the triggering events. This occurs when the maximum delay equals the inverse of the entropy rate of the plant. In this context, extensions of our previous results for event triggering strategies are presented for vector systems and are compared with the data-rate theorem for time-triggered control, that is extended here to a setting with unknown delay.Comment: To appear in the 56th IEEE Conference on Decision and Control (CDC), Melbourne, Australia. arXiv admin note: text overlap with arXiv:1609.0959

    Stabilizing a System with an Unbounded Random Gain Using Only Finitely Many Bits

    Get PDF
    We study the stabilization of an unpredictable linear control system where the controller must act based on a rate-limited observation of the state. More precisely, we consider the system X_(n+1) = A_n X_n +W_n –U_n, where the A_n's are drawn independently at random at each time n from a known distribution with unbounded support, and where the controller receives at most R bits about the system state at each time from an encoder. We provide a time-varying achievable strategy to stabilize the system in a second-moment sense with fixed, finite R. While our previous result provided a strategy to stabilize this system using a variable-rate code, this work provides an achievable strategy using a fixed-rate code. The strategy we employ to achieve this is time-varying and takes different actions depending on the value of the state. It proceeds in two modes: a normal mode (or zoom-in), where the realization of A_n is typical, and an emergency mode (or zoom-out), where the realization of A_n is exceptionally large

    Stabilizing a system with an unbounded random gain using only a finite number of bits

    Get PDF
    We study the stabilization of an unpredictable linear control system where the controller must act based on a rate-limited observation of the state. More precisely, we consider the system X_(n+1) = A_nX_n+W_n−U_n, where the A_n's are drawn independently at random at each time n from a known distribution with unbounded support, and where the controller receives at most R bits about the system state at each time from an encoder. We provide a time-varying achievable strategy to stabilize the system in a second-moment sense with fixed, finite R. While our previous result provided a strategy to stabilize this system using a variable-rate code, this work provides an achievable strategy using a fixed-rate code. The strategy we employ to achieve this is time-varying and takes different actions depending on the value of the state. It proceeds in two modes: a normal mode (or zoom-in), where the realization of A_n is typical, and an emergency mode (or zoom-out), where the realization of A_n is exceptionally large

    Mini-Workshop: Entropy, Information and Control

    Get PDF
    This mini-workshop was motivated by the emerging field of networked control, which combines concepts from the disciplines of control theory, information theory and dynamical systems. Many current approaches to networked control simplify one or more of these three aspects, for instance by assuming no dynamical disturbances, or noiseless communication channels, or linear dynamics. The aim of this meeting was to approach a common understanding of the relevant results and techniques from each discipline in order to study the major, multi-disciplinary problems in networked control

    Exploiting timing information in event-triggered stabilization of linear systems with disturbances

    Get PDF
    In the same way that subsequent pauses in spoken language are used to convey information, it is also possible to transmit information in communication networks not only by message content, but also with its timing. This paper presents an event-triggering strategy that utilizes timing information by transmitting in a state-dependent fashion. We consider the stabilization of a continuous-time, time-invariant, linear plant over a digital communication channel with bounded delay and subject to bounded plant disturbances and establish two main results. On the one hand, we design an encoding-decoding scheme that guarantees a sufficient information transmission rate for stabilization. On the other hand, we determine a lower bound on the information transmission rate necessary for stabilization by any control policy

    Stabilizing a system with an unbounded random gain using only a finite number of bits

    Get PDF
    We study the stabilization of an unpredictable linear control system where the controller must act based on a rate-limited observation of the state. More precisely, we consider the system X_(n+1) = A_nX_n+W_n−U_n, where the A_n's are drawn independently at random at each time n from a known distribution with unbounded support, and where the controller receives at most R bits about the system state at each time from an encoder. We provide a time-varying achievable strategy to stabilize the system in a second-moment sense with fixed, finite R. While our previous result provided a strategy to stabilize this system using a variable-rate code, this work provides an achievable strategy using a fixed-rate code. The strategy we employ to achieve this is time-varying and takes different actions depending on the value of the state. It proceeds in two modes: a normal mode (or zoom-in), where the realization of A_n is typical, and an emergency mode (or zoom-out), where the realization of A_n is exceptionally large

    Stabilizing a System with an Unbounded Random Gain Using Only Finitely Many Bits

    Get PDF
    We study the stabilization of an unpredictable linear control system where the controller must act based on a rate-limited observation of the state. More precisely, we consider the system X_(n+1) = A_n X_n +W_n –U_n, where the A_n's are drawn independently at random at each time n from a known distribution with unbounded support, and where the controller receives at most R bits about the system state at each time from an encoder. We provide a time-varying achievable strategy to stabilize the system in a second-moment sense with fixed, finite R. While our previous result provided a strategy to stabilize this system using a variable-rate code, this work provides an achievable strategy using a fixed-rate code. The strategy we employ to achieve this is time-varying and takes different actions depending on the value of the state. It proceeds in two modes: a normal mode (or zoom-in), where the realization of A_n is typical, and an emergency mode (or zoom-out), where the realization of A_n is exceptionally large
    corecore