60 research outputs found

    The representer theorem for Hilbert spaces: a necessary and sufficient condition

    Full text link
    A family of regularization functionals is said to admit a linear representer theorem if every member of the family admits minimizers that lie in a fixed finite dimensional subspace. A recent characterization states that a general class of regularization functionals with differentiable regularizer admits a linear representer theorem if and only if the regularization term is a non-decreasing function of the norm. In this report, we improve over such result by replacing the differentiability assumption with lower semi-continuity and deriving a proof that is independent of the dimensionality of the space

    A representer theorem for deep kernel learning

    Full text link
    In this paper we provide a finite-sample and an infinite-sample representer theorem for the concatenation of (linear combinations of) kernel functions of reproducing kernel Hilbert spaces. These results serve as mathematical foundation for the analysis of machine learning algorithms based on compositions of functions. As a direct consequence in the finite-sample case, the corresponding infinite-dimensional minimization problems can be recast into (nonlinear) finite-dimensional minimization problems, which can be tackled with nonlinear optimization algorithms. Moreover, we show how concatenated machine learning problems can be reformulated as neural networks and how our representer theorem applies to a broad class of state-of-the-art deep learning methods
    corecore