29,470 research outputs found

    Self-Stabilizing Repeated Balls-into-Bins

    Full text link
    We study the following synchronous process that we call "repeated balls-into-bins". The process is started by assigning nn balls to nn bins in an arbitrary way. In every subsequent round, from each non-empty bin one ball is chosen according to some fixed strategy (random, FIFO, etc), and re-assigned to one of the nn bins uniformly at random. We define a configuration "legitimate" if its maximum load is O(logn)\mathcal{O}(\log n). We prove that, starting from any configuration, the process will converge to a legitimate configuration in linear time and then it will only take on legitimate configurations over a period of length bounded by any polynomial in nn, with high probability (w.h.p.). This implies that the process is self-stabilizing and that every ball traverses all bins in O(nlog2n)\mathcal{O}(n \log^2 n) rounds, w.h.p

    Fast and Compact Distributed Verification and Self-Stabilization of a DFS Tree

    Full text link
    We present algorithms for distributed verification and silent-stabilization of a DFS(Depth First Search) spanning tree of a connected network. Computing and maintaining such a DFS tree is an important task, e.g., for constructing efficient routing schemes. Our algorithm improves upon previous work in various ways. Comparable previous work has space and time complexities of O(nlogΔ)O(n\log \Delta) bits per node and O(nD)O(nD) respectively, where Δ\Delta is the highest degree of a node, nn is the number of nodes and DD is the diameter of the network. In contrast, our algorithm has a space complexity of O(logn)O(\log n) bits per node, which is optimal for silent-stabilizing spanning trees and runs in O(n)O(n) time. In addition, our solution is modular since it utilizes the distributed verification algorithm as an independent subtask of the overall solution. It is possible to use the verification algorithm as a stand alone task or as a subtask in another algorithm. To demonstrate the simplicity of constructing efficient DFS algorithms using the modular approach, We also present a (non-sielnt) self-stabilizing DFS token circulation algorithm for general networks based on our silent-stabilizing DFS tree. The complexities of this token circulation algorithm are comparable to the known ones

    Self-stabilizing Numerical Iterative Computation

    Full text link
    Many challenging tasks in sensor networks, including sensor calibration, ranking of nodes, monitoring, event region detection, collaborative filtering, collaborative signal processing, {\em etc.}, can be formulated as a problem of solving a linear system of equations. Several recent works propose different distributed algorithms for solving these problems, usually by using linear iterative numerical methods. In this work, we extend the settings of the above approaches, by adding another dimension to the problem. Specifically, we are interested in {\em self-stabilizing} algorithms, that continuously run and converge to a solution from any initial state. This aspect of the problem is highly important due to the dynamic nature of the network and the frequent changes in the measured environment. In this paper, we link together algorithms from two different domains. On the one hand, we use the rich linear algebra literature of linear iterative methods for solving systems of linear equations, which are naturally distributed with rapid convergence properties. On the other hand, we are interested in self-stabilizing algorithms, where the input to the computation is constantly changing, and we would like the algorithms to converge from any initial state. We propose a simple novel method called \syncAlg as a self-stabilizing variant of the linear iterative methods. We prove that under mild conditions the self-stabilizing algorithm converges to a desired result. We further extend these results to handle the asynchronous case. As a case study, we discuss the sensor calibration problem and provide simulation results to support the applicability of our approach

    Universality and Sharpness in Absorbing-State Phase Transitions

    Full text link
    We consider the Activated Random Walk model in any dimension with any sleep rate and jump distribution and ergodic initial state. We show that the stabilization properties depend only on the average density of particles, regardless of how they are initially located on the lattice

    Persistence based analysis of consensus protocols for dynamic graph networks

    Full text link
    This article deals with the consensus problem involving agents with time-varying singularities in the dynamics or communication in undirected graph networks. Existing results provide control laws which guarantee asymptotic consensus. These results are based on the analysis of a system switching between piecewise constant and time-invariant dynamics. This work introduces a new analysis technique relying upon classical notions of persistence of excitation to study the convergence properties of the time-varying multi-agent dynamics. Since the individual edge weights pass through singularities and vary with time, the closed-loop dynamics consists of a non-autonomous linear system. Instead of simplifying to a piecewise continuous switched system as in literature, smooth variations in edge weights are allowed, albeit assuming an underlying persistence condition which characterizes sufficient inter-agent communication to reach consensus. The consensus task is converted to edge-agreement in order to study a stabilization problem to which classical persistence based results apply. The new technique allows precise computation of the rate of convergence to the consensus value.Comment: This article contains 7 pages and includes 4 figures. it is accepted in 13th European Control Conferenc
    corecore