58 research outputs found

    CSWA: Aggregation-Free Spatial-Temporal Community Sensing

    Full text link
    In this paper, we present a novel community sensing paradigm -- {C}ommunity {S}ensing {W}ithout {A}ggregation}. CSWA is designed to obtain the environment information (e.g., air pollution or temperature) in each subarea of the target area, without aggregating sensor and location data collected by community members. CSWA operates on top of a secured peer-to-peer network over the community members and proposes a novel \emph{Decentralized Spatial-Temporal Compressive Sensing} framework based on \emph{Parallelized Stochastic Gradient Descent}. Through learning the \emph{low-rank structure} via distributed optimization, CSWA approximates the value of the sensor data in each subarea (both covered and uncovered) for each sensing cycle using the sensor data locally stored in each member's mobile device. Simulation experiments based on real-world datasets demonstrate that CSWA exhibits low approximation error (i.e., less than 0.2∘0.2 ^\circC in city-wide temperature sensing task and 1010 units of PM2.5 index in urban air pollution sensing) and performs comparably to (sometimes better than) state-of-the-art algorithms based on the data aggregation and centralized computation.Comment: This paper has been accepted by AAAI 2018. First two authors are equally contribute

    EdgeSense: Edge-Mediated Spatial-Temporal Crowdsensing

    Get PDF
    Edge computing recently is increasingly popular due to the growth of data size and the need of sensing with the reduced center. Based on Edge computing architecture, we propose a novel crowdsensing framework called Edge-Mediated Spatial-Temporal Crowdsensing. This algorithm targets on receiving the environment information such as air pollution, temperature, and traffic flow in some parts of the goal area, and does not aggregate sensor data with its location information. Specifically, EdgeSense works on top of a secured peer-To-peer network consisted of participants and propose a novel Decentralized Spatial-Temporal Crowdsensing framework based on Parallelized Stochastic Gradient Descent. To approximate the sensing data in each part of the target area in each sensing cycle, EdgeSense uses the local sensor data in participants\u27 mobile devices to learn the low-rank characteristic and then recovers the sensing data from it. We evaluate the EdgeSense on the real-world data sets (temperature [1] and PM2.5 [2] data sets), where our algorithm can achieve low error in approximation and also can compete with the baseline algorithm which is designed using centralized and aggregated mechanism

    SPACE-TA: cost-effective task allocation exploiting intradata and interdata correlations in sparse crowdsensing

    Get PDF
    Data quality and budget are two primary concerns in urban-scale mobile crowdsensing. Traditional research on mobile crowdsensing mainly takes sensing coverage ratio as the data quality metric rather than the overall sensed data error in the target-sensing area. In this article, we propose to leverage spatiotemporal correlations among the sensed data in the target-sensing area to significantly reduce the number of sensing task assignments. In particular, we exploit both intradata correlations within the same type of sensed data and interdata correlations among different types of sensed data in the sensing task. We propose a novel crowdsensing task allocation framework called SPACE-TA (SPArse Cost-Effective Task Allocation), combining compressive sensing, statistical analysis, active learning, and transfer learning, to dynamically select a small set of subareas for sensing in each timeslot (cycle), while inferring the data of unsensed subareas under a probabilistic data quality guarantee. Evaluations on real-life temperature, humidity, air quality, and traffic monitoring datasets verify the effectiveness of SPACE-TA. In the temperature- monitoring task leveraging intradata correlations, SPACE-TA requires data from only 15.5% of the subareas while keeping the inference error below 0.25°C in 95% of the cycles, reducing the number of sensed subareas by 18.0% to 26.5% compared to baselines. When multiple tasks run simultaneously, for example, for temperature and humidity monitoring, SPACE-TA can further reduce ∌10% of the sensed subareas by exploiting interdata correlations

    Multi-dimensional urban sensing in sparse mobile crowdsensing

    Get PDF
    International audienceSparse mobile crowdsensing (MCS) is a promising paradigm for the large-scale urban sensing, which allows us to collect data from only a few areas (cell selection) and infer the data of other areas (data inference). It can significantly reduce the sensing cost while ensuring high data quality. Recently, large urban sensing systems often require multiple types of sensing data (e.g., publish two tasks on temperature and humidity respectively) to form a multi-dimensional urban sensing map. These multiple types of sensing data hold some inherent correlations, which can be leveraged to further reduce the sensing cost and improve the accuracy of the inferred results. In this paper, we study the multi-dimensional urban sensing in sparse MCS to jointly address the data inference and cell selection for multi-task scenarios. We exploit the intra-and inter-task correlations in data inference to deduce the data of the unsensed cells through the multi-task compressive sensing and then learn and select the most effective cell, task pairs by using reinforcement learning. To effectively capture the intra-and inter-task correlations in cell selection, we design a network structure with multiple branches, where branches extract the intra-task correlations for each task, respectively, and then catenates the results from all branches to capture the inter-task correlations among the multiple tasks. In addition, we present a two-stage online framework for reinforcement learning in practical use, including training and running phases. The extensive experiments have been conducted on two real-world urban sensing datasets, each with two types of sensing data, which verify the effectiveness of our proposed algorithms on multi-dimensional urban sensing and achieve better performances than the state-of-the-art mechanisms

    Reinforcement learning-based cell selection in sparse mobile crowdsensing

    Get PDF
    International audienceSparse Mobile Crowdsensing (MCS) is a novel MCS paradigm which allows us to use the mobile devices to collect sensing data from only a small subset of cells (sub-areas) in the target sensing area while intelligently inferring the data of other cells with quality guarantee. Since selecting sensed data from different cell sets will probably lead to diverse levels of inference data quality, cell selection (i.e., choosing which cells in the target area to collect sensed data from participants) is a critical issue that will impact the total amount of data that requires to be collected (i.e., data collection costs) for ensuring a certain level of data quality. To address this issue, this paper proposes the reinforcement learning-based cell selection algorithm for Sparse MCS. First, we model the key concepts in reinforcement learning including state, action, and reward, and then propose a Q-learning based cell selection algorithm. To deal with the large state space, we employ the deep Q-network to learn the Q-function that can help decide which cell is a better choice under a certain state during cell selection. Then, we modify the Q-network to a deep recurrent Q-network with LSTM to catch the temporal patterns and handle partial observability. Furthermore, we leverage the transfer learning techniques to relieve the dependency on a large amount of training data. Experiments on various real-life sensing datasets verify the effectiveness of our proposed algorithms over the state-of-the-art mechanisms in Sparse MCS by reducing up to 20% of sensed cells with the same data inference quality guarantee

    IAM - Interpolation and Aggregation on the Move: Collaborative Crowdsensing for Spatio-temporal Phenomena

    Get PDF
    International audienceCrowdsensing allows citizens to contribute to the monitoring of their living environment using the sensors embedded in their mobile devices, e.g., smartphones. However, crowdsensing at scale involves significant communication, computation, and financial costs due to the dependence on cloud infrastructures for the analysis (e.g., interpolation and aggregation) of spatio-temporal data. This limits the adoption of crowdsensing by activists although sorely needed to inform our knowledge of the environment. As an alternative to the centralized analysis of crowdsensed observations, this paper introduces a fully distributed interpolation-mediated aggregation approach running on smartphones. To achieve so efficiently, we model the interpolation as a distributed tensor completion problem, and we introduce a lightweight aggregation strategy that anticipates the likelihood of future encounters according to the quality of the interpolation. Our approach thus shifts the centralized postprocessing of crowdsensed data to distributed pre-processing on the move, based on opportunistic encounters of crowdsensors through state-of-the-art D2D networking. The evaluation using a dataset of quantitative environmental measurements collected from 550 crowdsensors over 1 year shows that our solution significantly reduces-and may even eliminate-the dependence on the cloud infrastructure, while it incurs a limited resource cost on end devices. Meanwhile, the overall data accuracy remains comparable to that of the centralized approach

    Evaluating Sensor Data in the Context of Mobile Crowdsensing

    Get PDF
    With the recent rise of the Internet of Things the prevalence of mobile sensors in our daily life experienced a huge surge. Mobile crowdsensing (MCS) is a new emerging paradigm that realizes the utility and ubiquity of smartphones and more precisely their incorporated smart sensors. By using the mobile phones and data of ordinary citizens, many problems have to be solved when designing an MCS-application. What data is needed in order to obtain the wanted results? Should the calculations be executed locally or on a server? How can the quality of data be improved? How can the data best be evaluated? These problems are addressed by the design of a streamlined approach of how to create an MCS-application while having all these problems in mind. In order to design this approach, an exhaustive literature research on existing MCS-applications was done and to validate this approach a new application was designed with its help. The procedure of designing and implementing this application went smoothly and thus shows the applicability of the approach
    • 

    corecore