807 research outputs found

    Fully polynomial FPT algorithms for some classes of bounded clique-width graphs

    Get PDF
    Parameterized complexity theory has enabled a refined classification of the difficulty of NP-hard optimization problems on graphs with respect to key structural properties, and so to a better understanding of their true difficulties. More recently, hardness results for problems in P were achieved using reasonable complexity theoretic assumptions such as: Strong Exponential Time Hypothesis (SETH), 3SUM and All-Pairs Shortest-Paths (APSP). According to these assumptions, many graph theoretic problems do not admit truly subquadratic algorithms, nor even truly subcubic algorithms (Williams and Williams, FOCS 2010 and Abboud, Grandoni, Williams, SODA 2015). A central technique used to tackle the difficulty of the above mentioned problems is fixed-parameter algorithms for polynomial-time problems with polynomial dependency in the fixed parameter (P-FPT). This technique was introduced by Abboud, Williams and Wang in SODA 2016 and continued by Husfeldt (IPEC 2016) and Fomin et al. (SODA 2017), using the treewidth as a parameter. Applying this technique to clique-width, another important graph parameter, remained to be done. In this paper we study several graph theoretic problems for which hardness results exist such as cycle problems (triangle detection, triangle counting, girth, diameter), distance problems (diameter, eccentricities, Gromov hyperbolicity, betweenness centrality) and maximum matching. We provide hardness results and fully polynomial FPT algorithms, using clique-width and some of its upper-bounds as parameters (split-width, modular-width and P_4P\_4-sparseness). We believe that our most important result is an O(k4n+m){\cal O}(k^4 \cdot n + m)-time algorithm for computing a maximum matching where kk is either the modular-width or the P_4P\_4-sparseness. The latter generalizes many algorithms that have been introduced so far for specific subclasses such as cographs, P_4P\_4-lite graphs, P_4P\_4-extendible graphs and P_4P\_4-tidy graphs. Our algorithms are based on preprocessing methods using modular decomposition, split decomposition and primeval decomposition. Thus they can also be generalized to some graph classes with unbounded clique-width

    Core congestion is inherent in hyperbolic networks

    Full text link
    We investigate the impact the negative curvature has on the traffic congestion in large-scale networks. We prove that every Gromov hyperbolic network GG admits a core, thus answering in the positive a conjecture by Jonckheere, Lou, Bonahon, and Baryshnikov, Internet Mathematics, 7 (2011) which is based on the experimental observation by Narayan and Saniee, Physical Review E, 84 (2011) that real-world networks with small hyperbolicity have a core congestion. Namely, we prove that for every subset XX of vertices of a δ\delta-hyperbolic graph GG there exists a vertex mm of GG such that the disk D(m,4δ)D(m,4 \delta) of radius 4δ4 \delta centered at mm intercepts at least one half of the total flow between all pairs of vertices of XX, where the flow between two vertices x,yXx,y\in X is carried by geodesic (or quasi-geodesic) (x,y)(x,y)-paths. A set SS intercepts the flow between two nodes xx and yy if SS intersect every shortest path between xx and yy. Differently from what was conjectured by Jonckheere et al., we show that mm is not (and cannot be) the center of mass of XX but is a node close to the median of XX in the so-called injective hull of XX. In case of non-uniform traffic between nodes of XX (in this case, the unit flow exists only between certain pairs of nodes of XX defined by a commodity graph RR), we prove a primal-dual result showing that for any ρ>5δ\rho>5\delta the size of a ρ\rho-multi-core (i.e., the number of disks of radius ρ\rho) intercepting all pairs of RR is upper bounded by the maximum number of pairwise (ρ3δ)(\rho-3\delta)-apart pairs of RR

    Singularities and Quantum Gravity

    Full text link
    Although there is general agreement that a removal of classical gravitational singularities is not only a crucial conceptual test of any approach to quantum gravity but also a prerequisite for any fundamental theory, the precise criteria for non-singular behavior are often unclear or controversial. Often, only special types of singularities such as the curvature singularities found in isotropic cosmological models are discussed and it is far from clear what this implies for the very general singularities that arise according to the singularity theorems of general relativity. In these lectures we present an overview of the current status of singularities in classical and quantum gravity, starting with a review and interpretation of the classical singularity theorems. This suggests possible routes for quantum gravity to evade the devastating conclusion of the theorems by different means, including modified dynamics or modified geometrical structures underlying quantum gravity. The latter is most clearly present in canonical quantizations which are discussed in more detail. Finally, the results are used to propose a general scheme of singularity removal, quantum hyperbolicity, to show cases where it is realized and to derive intuitive semiclassical pictures of cosmological bounces.Comment: 41 pages, lecture course at the XIIth Brazilian School on Cosmology and Gravitation, September 200
    corecore