15 research outputs found

    Wheelchair control based on a polynomial function approximating a user's gaze curve

    Get PDF
    We propose a new wheelchair control system based on a polynomial function approximating a user\u27s gaze curve. Conventional studies utilizing gaze data recognized three wheelchair movements: "go straight," "turn right," and "turn left." However, it was difficult for the system to assess when it should switch wheelchair motions because the user\u27s gaze was always changing. To solve this problem, we divided "turn right" and "turn left" wheelchair movements into three groups each in order to control the wheelchair easily. Consequently, the system has to recognize seven wheelchair movements: straight, and three groups each for turning right and left. It is not sufficiency for a system to assess seven wheelchair movements by only the user\u27s gaze. Thus, we developed a wheelchair system considering not only the user\u27s gaze but also the angular velocity and acceleration to control wheelchair motions. We approximated the user\u27s gaze using a polynomial function, and calculated the fine gaze angle, angular velocity and acceleration. The effectiveness of the proposed method was shown by experimental results

    Autonomous wheelchair with a smart driving mode and a Wi-Fi positioning system

    Get PDF
    Wheelchairs are an important aid that enhances the mobility of people with several types of disabilities. Therefore, there has been considerable research and development on wheelchairs to meet the needs of the disabled. Since the early manual wheelchairs to their more recent electric powered counterparts, advancements have focused on improving autonomy in mobility. Other developments, such as Internet advancements, have developed the concept of the Internet of Things (IoT). This is a promising area that has been studied to enhance the independent operation of the electrical wheelchairs by enabling autonomous navigation and obstacle avoidance. This dissertation describes shortly the design of an autonomous wheelchair of the IPL/IT (Instituto Politécnico de Leiria/Instituto de Telecomunicações) with smart driving features for persons with visual impairments. The objective is to improve the prototype of an intelligent wheelchair. The first prototype of the wheelchair was built to control it by voice, ocular movements, and GPS (Global Positioning System). Furthermore, the IPL/IT wheelchair acquired a remote control feature which could prove useful for persons with low levels of visual impairment. This tele-assistance mode will be helpful to the family of the wheelchair user or, simply, to a health care assistant. Indoor and outdoor positioning systems, with printed directional Wi-Fi antennas, have been deployed to enable a precise location of our wheelchair. The underlying framework for the wheelchair system is the IPL/IT low cost autonomous wheelchair prototype that is based on IoT technology for improved affordability

    Resource-aware plan recognition in instrumented environments

    Get PDF
    This thesis addresses the problem of plan recognition in instrumented environments, which is to infer an agent';s plans by observing its behavior. In instrumented environments such observations are made by physical sensors. This introduces specific challenges, of which the following two are considered in this thesis: - Physical sensors often observe state information instead of actions. As classical plan recognition approaches usually can only deal with action observations, this requires a cumbersome and error-prone inference of executed actions from observed states. - Due to limited physical resources of the environment it is often not possible to run all sensors at the same time, thus sensor selection techniques have to be applied. Current plan recognition approaches are not able to support the environment in selecting relevant subsets of sensors. This thesis proposes a two-stage approach to solve the problems described above. Firstly, a DBN-based plan recognition approach is presented which allows for the explicit representation and consideration of state knowledge. Secondly, a POMDP-based utility model for observation sources is presented which can be used with generic utility-based sensor selection algorithms. Further contributions include the presentation of a software toolkit that realizes plan recognition and sensor selection in instrumented environments, and an empirical evaluation of the validity and performance of the proposed models.Diese Arbeit behandelt das Problem der Planerkennung in instrumentierten Umgebungen. Ziel ist dabei das Erschließen der Pläne des Nutzers anhand der Beobachtung seiner Handlungen. In instrumentierten Umgebungen erfolgt diese Beobachtung über physische Sensoren. Dies wirft spezifische Probleme auf, von denen zwei in dieser Arbeit näher betrachtet werden: - Physische Sensoren beobachten in der Regel Zustände anstelle direkter Nutzeraktionen. Klassische Planerkennungsverfahren basieren jedoch auf der Beobachtung von Aktionen, was bisher eine aufwendige und fehlerträchtige Ableitung von Aktionen aus Zustandsbeobachtungen notwendig macht. - Aufgrund beschränkter Resourcen der Umgebung ist es oft nicht möglich alle Sensoren gleichzeitig zu aktivieren. Aktuelle Planerkennungsverfahren bieten keine Möglichkeit, die Umgebung bei der Auswahl einer relevanten Teilmenge von Sensoren zu unterstützen. Diese Arbeit beschreibt einen zweistufigen Ansatz zur Lösung der genannten Probleme. Zunächst wird ein DBN-basiertes Planerkennungsverfahren vorgestellt, das Zustandswissen explizit repräsentiert und in Schlussfolgerungen berücksichtigt. Dieses Verfahren bildet die Basis für ein POMDP-basiertes Nutzenmodell für Beobachtungsquellen, das für den Zweck der Sensorauswahl genutzt werden kann. Des Weiteren wird ein Toolkit zur Realisierung von Planerkennungs- und Sensorauswahlfunktionen vorgestellt sowie die Gültigkeit und Performanz der vorgestellten Modelle in einer empirischen Studie evaluiert

    Haptics Rendering and Applications

    Get PDF
    There has been significant progress in haptic technologies but the incorporation of haptics into virtual environments is still in its infancy. A wide range of the new society's human activities including communication, education, art, entertainment, commerce and science would forever change if we learned how to capture, manipulate and reproduce haptic sensory stimuli that are nearly indistinguishable from reality. For the field to move forward, many commercial and technological barriers need to be overcome. By rendering how objects feel through haptic technology, we communicate information that might reflect a desire to speak a physically- based language that has never been explored before. Due to constant improvement in haptics technology and increasing levels of research into and development of haptics-related algorithms, protocols and devices, there is a belief that haptics technology has a promising future

    Robotics 2010

    Get PDF
    Without a doubt, robotics has made an incredible progress over the last decades. The vision of developing, designing and creating technical systems that help humans to achieve hard and complex tasks, has intelligently led to an incredible variety of solutions. There are barely technical fields that could exhibit more interdisciplinary interconnections like robotics. This fact is generated by highly complex challenges imposed by robotic systems, especially the requirement on intelligent and autonomous operation. This book tries to give an insight into the evolutionary process that takes place in robotics. It provides articles covering a wide range of this exciting area. The progress of technical challenges and concepts may illuminate the relationship between developments that seem to be completely different at first sight. The robotics remains an exciting scientific and engineering field. The community looks optimistically ahead and also looks forward for the future challenges and new development

    Human-Computer Interaction

    Get PDF
    In this book the reader will find a collection of 31 papers presenting different facets of Human Computer Interaction, the result of research projects and experiments as well as new approaches to design user interfaces. The book is organized according to the following main topics in a sequential order: new interaction paradigms, multimodality, usability studies on several interaction mechanisms, human factors, universal design and development methodologies and tools

    Advances in Reinforcement Learning

    Get PDF
    Reinforcement Learning (RL) is a very dynamic area in terms of theory and application. This book brings together many different aspects of the current research on several fields associated to RL which has been growing rapidly, producing a wide variety of learning algorithms for different applications. Based on 24 Chapters, it covers a very broad variety of topics in RL and their application in autonomous systems. A set of chapters in this book provide a general overview of RL while other chapters focus mostly on the applications of RL paradigms: Game Theory, Multi-Agent Theory, Robotic, Networking Technologies, Vehicular Navigation, Medicine and Industrial Logistic

    Twelfth Annual Conference on Manual Control

    Get PDF
    Main topics discussed cover multi-task decision making, attention allocation and workload measurement, displays and controls, nonvisual displays, tracking and other psychomotor tasks, automobile driving, handling qualities and pilot ratings, remote manipulation, system identification, control models, and motion and visual cues. Sixty-five papers are included with presentations on results of analytical studies to develop and evaluate human operator models for a range of control task, vehicle dynamics and display situations; results of tests of physiological control systems and applications to medical problems; and on results of simulator and flight tests to determine display, control and dynamics effects on operator performance and workload for aircraft, automobile, and remote control systems
    corecore