242 research outputs found

    Assistive Technology and Biomechatronics Engineering

    Get PDF
    This Special Issue will focus on assistive technology (AT) to address biomechanical and control of movement issues in individuals with impaired health, whether as a result of disability, disease, or injury. All over the world, technologies are developed that make human life richer and more comfortable. However, there are people who are not able to benefit from these technologies. Research can include development of new assistive technology to promote more effective movement, the use of existing technology to assess and treat movement disorders, the use and effectiveness of virtual rehabilitation, or theoretical issues, such as modeling, which underlie the biomechanics or motor control of movement disorders. This Special Issue will also cover Internet of Things (IoT) sensing technology and nursing care robot applications that can be applied to new assistive technologies. IoT includes data, more specifically gathering them efficiently and using them to enable intelligence, control, and new applications

    Physiological demands and court-movement patterns of wheelchair tennis

    Get PDF
    The wheelchair tennis evidence base has developed considerably in recent years. For those with a spinal cord injury (SCI), or severe physical impairment, tennis participation represents an opportunity for skill and motor development, and potential for disease risk reduction (Abel et al., 2008). However, as a complex series of technical, tactical and physical elements are implicated, participation for novice, developmental or low-skill players can be challenging. Hence, extension of the evidence base to consider the responses of such groups during play is of considerable value. Initial experimental studies in this thesis investigated the validity, reliability and applicability of instrumentation for the assessment of wheelchair tennis court-movement. Comparisons were made between a global positioning system (GPS) and the data logger (DL) device (Study 1). GPS underestimated criterion distance in tennis-specific drills and reported lower match-play values than the DL. In contrast, DL placed on the outside wheel offered an accurate representation of distance. However, underestimations for DL were revealed at speeds > 2.50 m·s-1 during treadmill testing. Consequently, Study 2 extended this work with consideration of DL applicability for wheelchair tennis match-play. Examination of speed profiles revealed that time spent below the threshold for accuracy was trivial, confirming DL applicability for court-movement assessment. Further between-group comparisons for rank [highly-ranked (HIGH), low-ranked (LOW)], sex (male, female) and format (singles, doubles) revealed that LOW were stationary for longer than HIGH and spent more time at low propulsion speeds. Time in higher speed zones was greatest for HIGH and doubles players. Between-group differences (rank) were further scrutinised in Study 3 with attention paid to describing the physiological response of competitive match-play aligned to court-movement. Set outcome (result) was also examined. Independent of result, HIGH covered greater overall, forwards, reverse and forwards-to-reverse distances than LOW. Interestingly, HIGH winners covered greater distances than HIGH losers and had a higher mean average and minimum heart rate (HR) than LOW winners. In contrast, LOW losers had a higher mean average and mean minimum HR than LOW winners. Collectively, these outcomes suggest an enhanced ability for HIGH to respond to ball movement and the physiological and skill challenges of match-play. While this thesis confirmed that the activity duration and playing intensity is sufficient to confer health-related effects (Study 3), differences identified for rank suggested that strategies to 4 enable performance improvements in LOW were merited. The International Tennis Federation (ITF) has suggested that all starter players should be able to serve, rally and score from their first lesson (ITF, 2007). The reality however, is that chair propulsion whilst holding a racket is complex, and therefore, tennis play is challenging for novice and developmental players. Hence, the remainder of experimental work focused on interventions to enable increased court-movement and development of wheelchair tennis-specific court-mobility for LOW. The ITF have endorsed the use of a low-compression ball (LCB) for novices. An LCB bounces lower and moves more slowly through the air than a standard-compression ball (SCB). Novel findings from Study 4 revealed that greater total and forwards distances, greater average speeds and less time stationary result from use of the LCB. Increased movement activity occurred without associated increases in physiological cost, but was considered advantageous, with players adopting stronger positions for shot-play. Further examination of the linkage between movement and physiological variables were explored in the final experimental investigation (Study 5). A short period of organised practice enabled higher overall and forwards distances, and peak and average speeds to be achieved during match-play, without associated increases in physiological cost. Changes were desirable and represented enhanced court-mobility and mechanical efficiency (ME). Wheelchair tennis players were also more self-confident in tennis-specific chair-mobility, post-practice. The racket was a constraint, with lower distances and speeds, and a lower peak physiological response, achieved during tennis practice completed with a racket. This thesis advocates the use of an LCB and a short period of pre-match court-mobility practice for the novice wheelchair tennis player. Collectively, these interventions are likely to prompt greater court-movement enabling better court-positioning, develop confidence in court-mobility and shot-play, develop competence in racket handling whilst pushing, and enhancing ME. These characteristics are likely to enable participation with the likely inference being that greater competence, skill and self-confidence promotes greater enjoyment and therefore enhances longer-term compliance. This is of considerable practical significance given that tennis typically attracts new players to the game, but is less successful at retaining them (ITF, 2007)

    SPARC 2016 Salford postgraduate annual research conference book of abstracts

    Get PDF

    Quantifying Electric Powered Wheelchair Driving Ability

    Get PDF
    Electric Powered Wheelchairs (EPWs) are complex rehabilitation technology indispensable for independent mobility of people with disabilities. Clinical driving assessments are critical for the provision of EPWs and training EPW users to promote safe mobility. Multiple studies have illustrated that problems with driving EPWs are associated with impairments in motor, sensory and cognitive functions. Existing EPW driving assessment tools provide rehabilitation professionals little insight into the selection of specific training strategies for this key activity based on the users’ impairments. The primary objective of this study is to develop clinical tools to quantify users’ motor, sensory and cognitive impairments that are commonly evaluated during an EPW driving evaluation. The secondary objective is to develop an assistance based scoring system to evaluate EPW driving in the clinic and develop a set of clinically-relevant objective metrics that can serve as an outcome measure of EPW driving evaluation and training. This motivated the development and content validation of two clinical tools, the Powered Mobility Screening Tool (PMST) and the Powered Mobility Clinical Driving Assessment (PMCDA). A set of objective variables termed Quantitative Driving Metrics (QDM) were developed as digital markers for user’s driving ability. Preliminary psychometric evaluations of these movement-based variables in an EPW driving simulator revealed high stability and construct validity. Content validity of QDM was established through expert interviews. Real-world QDM computed using two modalities (passive motion capture and inertial measurement unit with 9 axis motion sensors) revealed high concurrent validity between the two modalities. A pilot study demonstrated the feasibility of gathering data to compute QDM in a wheelchair clinic. Psychometric evaluation revealed that the PMCDA and QDM have acceptable measurement properties for use in a clinical setting

    Autonomous wheelchair with a smart driving mode and a Wi-Fi positioning system

    Get PDF
    Wheelchairs are an important aid that enhances the mobility of people with several types of disabilities. Therefore, there has been considerable research and development on wheelchairs to meet the needs of the disabled. Since the early manual wheelchairs to their more recent electric powered counterparts, advancements have focused on improving autonomy in mobility. Other developments, such as Internet advancements, have developed the concept of the Internet of Things (IoT). This is a promising area that has been studied to enhance the independent operation of the electrical wheelchairs by enabling autonomous navigation and obstacle avoidance. This dissertation describes shortly the design of an autonomous wheelchair of the IPL/IT (Instituto Politécnico de Leiria/Instituto de Telecomunicações) with smart driving features for persons with visual impairments. The objective is to improve the prototype of an intelligent wheelchair. The first prototype of the wheelchair was built to control it by voice, ocular movements, and GPS (Global Positioning System). Furthermore, the IPL/IT wheelchair acquired a remote control feature which could prove useful for persons with low levels of visual impairment. This tele-assistance mode will be helpful to the family of the wheelchair user or, simply, to a health care assistant. Indoor and outdoor positioning systems, with printed directional Wi-Fi antennas, have been deployed to enable a precise location of our wheelchair. The underlying framework for the wheelchair system is the IPL/IT low cost autonomous wheelchair prototype that is based on IoT technology for improved affordability

    Wearable Movement Sensors for Rehabilitation: From Technology to Clinical Practice

    Get PDF
    This Special Issue shows a range of potential opportunities for the application of wearable movement sensors in motor rehabilitation. However, the papers surely do not cover the whole field of physical behavior monitoring in motor rehabilitation. Most studies in this Special Issue focused on the technical validation of wearable sensors and the development of algorithms. Clinical validation studies, studies applying wearable sensors for the monitoring of physical behavior in daily life conditions, and papers about the implementation of wearable sensors in motor rehabilitation are under-represented in this Special Issue. Studies investigating the usability and feasibility of wearable movement sensors in clinical populations were lacking. We encourage researchers to investigate the usability, acceptance, feasibility, reliability, and clinical validity of wearable sensors in clinical populations to facilitate the application of wearable movement sensors in motor rehabilitation

    Smart Sensors for Healthcare and Medical Applications

    Get PDF
    This book focuses on new sensing technologies, measurement techniques, and their applications in medicine and healthcare. Specifically, the book briefly describes the potential of smart sensors in the aforementioned applications, collecting 24 articles selected and published in the Special Issue “Smart Sensors for Healthcare and Medical Applications”. We proposed this topic, being aware of the pivotal role that smart sensors can play in the improvement of healthcare services in both acute and chronic conditions as well as in prevention for a healthy life and active aging. The articles selected in this book cover a variety of topics related to the design, validation, and application of smart sensors to healthcare

    Accessibility of Health Data Representations for Older Adults: Challenges and Opportunities for Design

    Get PDF
    Health data of consumer off-the-shelf wearable devices is often conveyed to users through visual data representations and analyses. However, this is not always accessible to people with disabilities or older people due to low vision, cognitive impairments or literacy issues. Due to trade-offs between aesthetics predominance or information overload, real-time user feedback may not be conveyed easily from sensor devices through visual cues like graphs and texts. These difficulties may hinder critical data understanding. Additional auditory and tactile feedback can also provide immediate and accessible cues from these wearable devices, but it is necessary to understand existing data representation limitations initially. To avoid higher cognitive and visual overload, auditory and haptic cues can be designed to complement, replace or reinforce visual cues. In this paper, we outline the challenges in existing data representation and the necessary evidence to enhance the accessibility of health information from personal sensing devices used to monitor health parameters such as blood pressure, sleep, activity, heart rate and more. By creating innovative and inclusive user feedback, users will likely want to engage and interact with new devices and their own data
    • …
    corecore