1,613 research outputs found

    Agricultural Research Service research highlights in remote sensing for calendar year 1981

    Get PDF
    Selected examples of research accomplishments related to remote sensing are compiled. A brief statement is given to highlight the significant results of each research project. A list of 1981 publication and location contacts is given also. The projects cover emission and reflectance analysis, identification of crop and soil parameters, and the utilization of remote sensing data

    Leaf nitrogen determination using non-destructive techniques–A review

    Full text link
    © 2017 Taylor & Francis Group, LLC. The optimisation of plant nitrogen-use-efficiency (NUE) has a direct impact on increasing crop production by optimising use of nitrogen fertiliser. Moreover, it protects environment from negative effects of nitrate leaching and nitrous oxide production. Accordingly, nitrogen (N) management in agriculture systems has been major focus of many researchers. Improvement of NUE can be achieved through several methods including more accurate measurement of foliar N contents of crops during different growth phases. There are two types of methods to diagnose foliar N status: destructive and non-destructive. Destructive methods are expensive and time-consuming, as they require tissue sampling and subsequent laboratory analysis. Thus, many farmers find destructive methods to be less attractive. Non-destructive methods are rapid and less expensive but are usually less accurate. Accordingly, improving the accuracy of non-destructive N estimations has become a common goal of many researchers, and various methods varying in complexity and optimality have been proposed for this purpose. This paper reviews various commonly used non-destructive methods for estimating foliar N status of plants

    Remote sensing and machine learning for prediction of wheat growth in precision agriculture applications

    Get PDF
    This thesis focuses on remote sensing and machine learning for prediction of wheat growth in precision agriculture applications. Agriculture is the primary productive force, which plays an important role in human activities. Wheat, as one of the essential sources of food, is also a widely planted crop. The impact of weather and climate and some other uncertain factors on wheat production is crucial. Therefore, it is necessary to use reliable and statistically reasonable models for crop growth and yield prediction based on vegetation index variables and other factors, so as to obtain reliable prediction for efficient production. Applying certain artificial intelligence algorithms to the precision agriculture can significantly improve the efficiency of traditional agriculture in crop planting and reduce the consumption of human and natural resources. Remote sensing can objectively, accurately and timely provide a large amount of information for ecological environment and crop growth in agriculture applications. By combining the image and spectral data obtained by remote sensing technology with machine learning, information about wheat growth, yield and insect pests can be learned in time. This thesis focuses on its applications in agriculture, particularly using effective prediction models such as the back propagation neural network and some optimisation algorithms for predicting wheat growth, yield and aphid. The work presented in this thesis address the issues of wheat growth prediction, yield assessment and aphid validation by model building and machine learning algorithm optimisation by means of remote sensing data. Specifically, the following objectives are defined: 1. Analyse multiple vegetation indexes based on the TM 1-4 band data of Landsat satellite and use regression algorithms to train the models and predict wheat growth; 2. Analyse and compare multiple vegetation indexes models by means of spectral data and use regression algorithms to predict wheat yield; 3. Combine spectral vegetation indexes and multiple regression algorithms to predict wheat aphid; 4. Use accurate evaluation criteria for validating the efficacy of the various algorithms. In this thesis, the remote sensing data from the satellite has been applied instead of the airborne-based remote sensing data. Based on the TM 1-4 band image data of Landsat satellite, multiple vegetation indexes were used as the input of regression algorithms. After that, four kinds of regression algorithms such as the multiple linear regression (MR) algorithm, back propagation network (BPNN) algorithm, genetic algorithm (GA) optimised BPNN algorithm and particle swarm optimisation (PSO) optimised BPNN algorithm were used to train the model and predict the LAI and SPAD. The prediction results of each algorithm were compared with the ground truth information collected by hand held instruments on the ground. The relationship between wheat yield and spectral data has been studied. Based on the BPNN algorithm, four kinds of models such as visible hyperspectral index (VHI) model, hyperspectral vegetation index (HVI) model, difference hyperspectral index (DHI) model and normalized hyperspectral index (NHI) model have been utilized to predict wheat yield. For the optimal NHI model, three regression algorithms such as back propagation network (BPNN) algorithm, genetic algorithm (GA) optimised BPNN algorithm and particle swarm optimisation (PSO) optimised BPNN algorithm, were compared to predict wheat yield, and RMSE and R-square of the three algorithms were compared and analysed. Finally, the relationship between wheat aphid and spectral data has been investigated. Nine vegetation indexes related to aphid have been estimated from spectral data as the input of regression algorithms. Five kinds of regression algorithms such as back propagation network (BPNN) algorithm, genetic algorithm (GA) optimised BPNN algorithm, particle swarm optimisation (PSO) optimised BPNN algorithm, ant colony (ACO) optimisation algorithm optimised BPNN algorithm and cuckoo search (CS) optimised BPNN algorithm have been implemented to predict wheat aphid, which was validated with the ground truth information measured by hand-held instruments on the ground. The prediction results of each algorithm have been analysed. The major original contributions of this thesis are as follows: 1. A variety of optimisation algorithms are used to improve the regression analysis of the BPNN algorithm, so that the prediction results of each model for wheat growth, yield and aphid are more accurate. 2. The spectral characteristics of winter wheat canopy have been analysed. The correlation between the absorption band and the associated physical and chemical properties of crops, specially the red edge slope, with the crop yield and wheat aphid damage is established. 3. Adjusted MSE and un-centered R-square, as accurate evaluation criteria for practical applications, are used to compare the prediction results of the models under different dimensions of the observed data. 4. Improve algorithm training by using the cross-validation method to obtain reliable and stable models for the prediction of wheat growth, yield, and aphid. Through repeated cross-validation, a better model can be obtained in the last. Key word:Precision agriculture; BP network, wheat growth assessment; wheat yield prediction, wheat aphid validationThis thesis focuses on remote sensing and machine learning for prediction of wheat growth in precision agriculture applications. Agriculture is the primary productive force, which plays an important role in human activities. Wheat, as one of the essential sources of food, is also a widely planted crop. The impact of weather and climate and some other uncertain factors on wheat production is crucial. Therefore, it is necessary to use reliable and statistically reasonable models for crop growth and yield prediction based on vegetation index variables and other factors, so as to obtain reliable prediction for efficient production. Applying certain artificial intelligence algorithms to the precision agriculture can significantly improve the efficiency of traditional agriculture in crop planting and reduce the consumption of human and natural resources. Remote sensing can objectively, accurately and timely provide a large amount of information for ecological environment and crop growth in agriculture applications. By combining the image and spectral data obtained by remote sensing technology with machine learning, information about wheat growth, yield and insect pests can be learned in time. This thesis focuses on its applications in agriculture, particularly using effective prediction models such as the back propagation neural network and some optimisation algorithms for predicting wheat growth, yield and aphid. The work presented in this thesis address the issues of wheat growth prediction, yield assessment and aphid validation by model building and machine learning algorithm optimisation by means of remote sensing data. Specifically, the following objectives are defined: 1. Analyse multiple vegetation indexes based on the TM 1-4 band data of Landsat satellite and use regression algorithms to train the models and predict wheat growth; 2. Analyse and compare multiple vegetation indexes models by means of spectral data and use regression algorithms to predict wheat yield; 3. Combine spectral vegetation indexes and multiple regression algorithms to predict wheat aphid; 4. Use accurate evaluation criteria for validating the efficacy of the various algorithms. In this thesis, the remote sensing data from the satellite has been applied instead of the airborne-based remote sensing data. Based on the TM 1-4 band image data of Landsat satellite, multiple vegetation indexes were used as the input of regression algorithms. After that, four kinds of regression algorithms such as the multiple linear regression (MR) algorithm, back propagation network (BPNN) algorithm, genetic algorithm (GA) optimised BPNN algorithm and particle swarm optimisation (PSO) optimised BPNN algorithm were used to train the model and predict the LAI and SPAD. The prediction results of each algorithm were compared with the ground truth information collected by hand held instruments on the ground. The relationship between wheat yield and spectral data has been studied. Based on the BPNN algorithm, four kinds of models such as visible hyperspectral index (VHI) model, hyperspectral vegetation index (HVI) model, difference hyperspectral index (DHI) model and normalized hyperspectral index (NHI) model have been utilized to predict wheat yield. For the optimal NHI model, three regression algorithms such as back propagation network (BPNN) algorithm, genetic algorithm (GA) optimised BPNN algorithm and particle swarm optimisation (PSO) optimised BPNN algorithm, were compared to predict wheat yield, and RMSE and R-square of the three algorithms were compared and analysed. Finally, the relationship between wheat aphid and spectral data has been investigated. Nine vegetation indexes related to aphid have been estimated from spectral data as the input of regression algorithms. Five kinds of regression algorithms such as back propagation network (BPNN) algorithm, genetic algorithm (GA) optimised BPNN algorithm, particle swarm optimisation (PSO) optimised BPNN algorithm, ant colony (ACO) optimisation algorithm optimised BPNN algorithm and cuckoo search (CS) optimised BPNN algorithm have been implemented to predict wheat aphid, which was validated with the ground truth information measured by hand-held instruments on the ground. The prediction results of each algorithm have been analysed. The major original contributions of this thesis are as follows: 1. A variety of optimisation algorithms are used to improve the regression analysis of the BPNN algorithm, so that the prediction results of each model for wheat growth, yield and aphid are more accurate. 2. The spectral characteristics of winter wheat canopy have been analysed. The correlation between the absorption band and the associated physical and chemical properties of crops, specially the red edge slope, with the crop yield and wheat aphid damage is established. 3. Adjusted MSE and un-centered R-square, as accurate evaluation criteria for practical applications, are used to compare the prediction results of the models under different dimensions of the observed data. 4. Improve algorithm training by using the cross-validation method to obtain reliable and stable models for the prediction of wheat growth, yield, and aphid. Through repeated cross-validation, a better model can be obtained in the last. Key word:Precision agriculture; BP network, wheat growth assessment; wheat yield prediction, wheat aphid validatio

    Growth and reflectance characteristics of winter wheat canopies

    Get PDF
    A valuable input to crop growth and yield models would be estimates of current crop condition. If multispectral reflectance indicates crop condition, then remote sensing may provide an additional tool for crop assessment. The effects of nitrogen fertilization on the spectral reflectance and agronomic characteristics of winter wheat (Triticum aestivum L.) were determined through field experiments. Spectral reflectance was measured during the 1979 and 1980 growing seasons with a spectroradiometer. Agronomic data included total leaf N concentration, leaf chlorophyll concentration, stage of development, leaf area index (LAI), plant moisture, and fresh and dry phytomass. Nitrogen deficiency caused increased visible, reduced near infrared, and increased middle infrared reflectance. These changes were related to lower levels of chlorophyll and reduced leaf area in the N-deficient plots. Green LAI, an important descriptor of wheat canopies, could be reliably estimated with multispectral data. The potential of remote sensing in distinguishing stressed from healthy crops is demonstrated. Evidence suggests multispectral imagery may be useful for monitoring crop condition

    Proceedings of the 1974 Lyndon B. Johnson Space Center Wheat-Yield Conference

    Get PDF
    The proceedings of the 1974 Lyndon B. Johnson Space Center Wheat-Yield Conference are presented. The state of art of wheat-yield forecasting and the feasibility of incorporating remote sensing into this forecasting were discussed with emphasis on formulating common approach to wheat-yield forecasting, primarily using conventional meteorological measurements, which can later include the various applications of remote sensing. Papers are presented which deal with developments in the field of crop modelling

    Novel technologies for the detection of Fusarium head blight disease and airborne inoculum

    Get PDF
    Many pathogens are dispersed by airborne spores, which can vary in space and time. We can use air sampling integrated with suitable diagnostic methods to give a rapid warning of inoculum presence to improve the timing of control options, such as fungicides. Air sampling can also be used to monitor changes in genetic traits of pathogen populations such as the race structure or frequency of fungicide resistance. Although some image-analysis methods are possible to identify spores, in many cases, species-specific identification can only be achieved by DNA-based methods such as qPCR and LAMP and in some cases by antibody-based methods (lateral flow devices) and biomarker-based methods (‘electronic noses’ and electro-chemical biosensors). Many of these methods also offer the prospect of rapid on-site detection to direct disease control decisions. Thresholds of spore concentrations that correspond to a disease risk depend on the sampler (spore-trap) location (whether just above the crop canopy, on a UAV or drone, or on a tall building) and also need to be considered with weather-based infection models. Where disease control by spore detection is not possible, some diseases can be detected at early stages using optical sensing methods, especially chlorophyll fluorescence. In the case of Fusarium infections on wheat, it is possible to map locations of severe infections, using optical sensing methods, to segregate harvesting of severely affected areas of fields to avoid toxins entering the food chain. This is most useful where variable crop growth or microclimates within fields generate spatially variable infection, i.e. parts of fields that develop disease, while other areas have escaped infection and do not develop any disease

    FIREX mission requirements document for renewable resources

    Get PDF
    The initial experimental program and mission requirements for a satellite synthetic aperture radar (SAR) system FIREX (Free-Flying Imaging Radar Experiment) for renewable resources is described. The spacecraft SAR is a C-band and L-band VV polarized system operating at two angles of incidence which is designated as a research instrument for crop identification, crop canopy condition assessments, soil moisture condition estimation, forestry type and condition assessments, snow water equivalent and snow wetness assessments, wetland and coastal land type identification and mapping, flood extent mapping, and assessment of drainage characteristics of watersheds for water resources applications. Specific mission design issues such as the preferred incidence angles for vegetation canopy measurements and the utility of a dual frequency (L and C-band) or dual polarization system as compared to the baseline system are addressed

    Agrometeorological forecasting

    Get PDF
    Agrometeorological forecasting covers all aspects of forecasting in agrometeorology. Therefore, the scope of agrometeorological forecasting very largely coincides with the scope of agrometeorology itself. All on-farm and regional agrometeorological planning implies some form of impact forecasting, at least implicitly, so that decision-support tools and forecasting tools largely overlap. In the current chapter, the focus is on crops, but attention is also be paid to sectors that are often neglected by the agrometeorologist, such as those occurring in plant and animal protection. In addition, the borders between meteorological forecasts for agriculture and agrometeorological forecasts are not always clear. Examples include the use of weather forecasts for farm operations such as spraying pesticides or deciding on trafficability in relation to adverse weather. Many forecast issues by various national institutions (weather, but also commodity prices or flood warnings) are vital to the farming community, but they do not constitute agrometeorological forecasts. (Modified From the introduction of the chapter: Scope of agrometeorological forecasting)JRC.H.4-Monitoring Agricultural Resource
    • …
    corecore