38 research outputs found

    On the Security and Privacy Challenges in Android-based Environments

    Get PDF
    In the last decade, we have faced the rise of mobile devices as a fundamental tool in our everyday life. Currently, there are above 6 billion smartphones, and 72% of them are Android devices. The functionalities of smartphones are enriched by mobile apps through which users can perform operations that in the past have been made possible only on desktop/laptop computing. Besides, users heavily rely on them for storing even the most sensitive information from a privacy point of view. However, apps often do not satisfy all minimum security requirements and can be targeted to indirectly attack other devices managed or connected to them (e.g., IoT nodes) that may perform sensitive operations such as health checks, control a smart car or open a smart lock. This thesis discusses some research activities carried out to enhance the security and privacy of mobile apps by i) proposing novel techniques to detect and mitigate security vulnerabilities and privacy issues, and ii) defining techniques devoted to the security evaluation of apps interacting with complex environments (e.g., mobile-IoT-Cloud). In the first part of this thesis, I focused on the security and privacy of Mobile Apps. Due to the widespread adoption of mobile apps, it is relatively straightforward for researchers or users to quickly retrieve the app that matches their tastes, as Google provides a reliable search engine. However, it is likewise almost impossible to select apps according to a security footprint (e.g., all apps that enforce SSL pinning). To overcome this limitation, I present APPregator, a platform that allows users to select apps according to a specific security footprint. This tool aims to implement state-of-the-art static and dynamic analysis techniques for mobile apps and provide security researchers and analysts with a tool that makes it possible to search for mobile applications under specific functional or security requirements. Regarding the security status of apps, I studied a particular context of mobile apps: hybrid apps composed of web technologies and native technologies (i.e., Java or Kotlin). In this context, I studied a vulnerability that affected only hybrid apps: the Frame Confusion. This vulnerability, despite being discovered several years ago, it is still very widespread. I proposed a methodology implemented in FCDroid that exploits static and dynamic analysis techniques to detect and trigger the vulnerability automatically. The results of an extensive analysis carried out through FCDroid on a set of the most downloaded apps from the Google Play Store prove that 6.63% (i.e., 1637/24675) of hybrid apps are potentially vulnerable to Frame Confusion. A side effect of the analysis I carried out through APPregator was suggesting that very few apps may have a privacy policy, despite Google Play Store imposes some strict rules about it and contained in the Google Play Privacy Guidelines. To empirically verify if that was the case, I proposed a methodology based on the combination of static analysis, dynamic analysis, and machine learning techniques. The proposed methodology verifies whether each app contains a privacy policy compliant with the Google Play Privacy Guidelines, and if the app accesses privacy-sensitive information only upon the acceptance of the policy by the user. I then implemented the methodology in a tool, 3PDroid, and evaluated a number of recent and most downloaded Android apps in the Google Play Store. Experimental results suggest that over 95% of apps access sensitive user privacy information, but only a negligible subset of it (~ 1%) fully complies with the Google Play Privacy Guidelines. Furthermore, the obtained results have also suggested that the user privacy could be put at risk by mobile apps that keep collecting a plethora of information regarding the user's and the device behavior by relying on third-party analytics libraries. However, collecting and using such data raised several privacy concerns, mainly because the end-user - i.e., the actual data owner - is out of the loop in this collection process. The existing privacy-enhanced solutions that emerged in the last years follow an ``all or nothing" approach, leaving to the user the sole option to accept or completely deny access to privacy-related data. To overcome the current state-of-the-art limitations, I proposed a data anonymization methodology, called MobHide, that provides a compromise between the usefulness and privacy of the data collected and gives the user complete control over the sharing process. For evaluating the methodology, I implemented it in a prototype called HideDroid and tested it on 4500 most-used Android apps of the Google Play Store between November 2020 and January 2021. In the second part of this thesis, I extended privacy and security considerations outside the boundary of the single mobile device. In particular, I focused on two scenarios. The first is composed of an IoT device and a mobile app that have a fruitful integration to resolve and perform specific actions. From a security standpoint, this leads to a novel and unprecedented attack surface. To deal with such threats, applying state-of-the-art security analysis techniques on each paradigm can be insufficient. I claimed that novel analysis methodologies able to systematically analyze the ecosystem as a whole must be put forward. To this aim, I introduced the idea of APPIoTTe, a novel approach to the security testing of Mobile-IoT hybrid ecosystems, as well as some notes on its implementation working on Android (Mobile) and Android Things (IoT) applications. The second scenario is composed of an IoT device widespread in the Smart Home environment: the Smart Speaker. Smart speakers are used to retrieving information, interacting with other devices, and commanding various IoT nodes. To this aim, smart speakers typically take advantage of cloud architectures: vocal commands of the user are sampled, sent through the Internet to be processed, and transmitted back for local execution, e.g., to activate an IoT device. Unfortunately, even if privacy and security are enforced through state-of-the-art encryption mechanisms, the features of the encrypted traffic, such as the throughput, the size of protocol data units, or the IP addresses, can leak critical information about the users' habits. In this perspective, I showcase this kind of risk by exploiting machine learning techniques to develop black-box models to classify traffic and implement privacy leaking attacks automatically

    Machine learning techniques for identification using mobile and social media data

    Get PDF
    Networked access and mobile devices provide near constant data generation and collection. Users, environments, applications, each generate different types of data; from the voluntarily provided data posted in social networks to data collected by sensors on mobile devices, it is becoming trivial to access big data caches. Processing sufficiently large amounts of data results in inferences that can be characterized as privacy invasive. In order to address privacy risks we must understand the limits of the data exploring relationships between variables and how the user is reflected in them. In this dissertation we look at data collected from social networks and sensors to identify some aspect of the user or their surroundings. In particular, we find that from social media metadata we identify individual user accounts and from the magnetic field readings we identify both the (unique) cellphone device owned by the user and their course-grained location. In each project we collect real-world datasets and apply supervised learning techniques, particularly multi-class classification algorithms to test our hypotheses. We use both leave-one-out cross validation as well as k-fold cross validation to reduce any bias in the results. Throughout the dissertation we find that unprotected data reveals sensitive information about users. Each chapter also contains a discussion about possible obfuscation techniques or countermeasures and their effectiveness with regards to the conclusions we present. Overall our results show that deriving information about users is attainable and, with each of these results, users would have limited if any indication that any type of analysis was taking place

    Towards secure web browsing on mobile devices

    Get PDF
    The Web is increasingly being accessed by portable, multi-touch wireless devices. Despite the popularity of platform-specific (native) mobile apps, a recent study of smartphone usage shows that more people (81%) browse the Web than use native apps (68%) on their phone. Moreover, many popular native apps such as BBC depend on browser-like components (e.g., Webview) for their functionality. The popularity and prevalence of web browsers on modern mobile phones warrants characterizing existing and emerging threats to mobile web browsing, and building solutions for the same. Although a range of studies have focused on the security of native apps on mobile devices, efforts in characterizing the security of web transactions originating at mobile browsers are limited. This dissertation presents three main contributions: First, we show that porting browsers to mobile platforms leads to new vulnerabilities previously not observed in desktop browsers. The solutions to these vulnerabilities require careful balancing between usability and security and might not always be equivalent to those in desktop browsers. Second, we empirically demonstrate that the combination of reduced screen space and an independent selection of security indicators not only make it difficult for experts to determine the security standing of mobile browsers, but actually make mobile browsing more dangerous for average users as they provide a false sense of security. Finally, we experimentally demonstrate the need for mobile specific techniques to detect malicious webpages. We then design and implement kAYO, the first mobile specific static tool to detect malicious webpages in real-time.Ph.D

    An Empirical Analysis of Cyber Deception Systems

    Get PDF

    Location data privacy : principles to practice

    Get PDF
    A thesis submitted in partial fulfillment of the requirements for the degree of Doctor in Information Management, specialization in Geographic Information SystemsLocation data is essential to the provision of relevant and tailored information in location-based services (LBS) but has the potential to reveal sensitive information about users. Unwanted disclosure of location data is associated with various threats known as dataveillance which can lead to risks like loss of control, (continuous) monitoring, identification, and social profiling. Striking a balance between providing a service based on the user’s location while protecting their (location) privacy is thus a key challenge in this area. Although many solutions have been developed to mitigate the data privacy-related threats, the aspects involving users (i.e. User Interfaces (UI)) and the way in which location data management can affects (location) data privacy have not received much attention in the literature. This thesis develops and evaluates approaches to facilitate the design and development of privacy-aware LBS. This work has explicitly focused on three areas: location data management in LBS, the design of UI for LBS, and compliance with (location) data privacy regulation. To address location data management, this thesis proposes modifications to LBS architectures and introduces the concept of temporal and spatial ephemerality as an alternative way to manage location privacy. The modifications include adding two components to the LBS architecture: one component dedicated to the management of decisions regarding collected location data such as applying restriction on the time that the service provider stores the data; and one component for adjusting location data privacy settings for the users of LBS. This thesis then develops a set of UI controls for fine-grained management of location privacy settings based on privacy theory (Westin), privacy by design principles and general UI design principles. Finally, this thesis brings forth a set of guidelines for the design and development of privacy-aware LBS through the analysis of the General Data Protection Regulation (GDPR) and expert recommendations. Service providers, designers, and developers of LBS can benefit from the contributions of this work as the proposed architecture and UI model can help them to recognise and address privacy issues during the LBS development process. The developed guidelines, on the other hand, can be helpful when developers and designers face difficulties understanding (location) data privacy-related regulations. The guidelines include both a list of legal requirements derived from GDPR’s text and expert suggestions for developers and designers of LBS in the process of complying with data privacy regulation

    Search Rank Fraud Prevention in Online Systems

    Get PDF
    The survival of products in online services such as Google Play, Yelp, Facebook and Amazon, is contingent on their search rank. This, along with the social impact of such services, has also turned them into a lucrative medium for fraudulently influencing public opinion. Motivated by the need to aggressively promote products, communities that specialize in social network fraud (e.g., fake opinions and reviews, likes, followers, app installs) have emerged, to create a black market for fraudulent search optimization. Fraudulent product developers exploit these communities to hire teams of workers willing and able to commit fraud collectively, emulating realistic, spontaneous activities from unrelated people. We call this behavior “search rank fraud”. In this dissertation, we argue that fraud needs to be proactively discouraged and prevented, instead of only reactively detected and filtered. We introduce two novel approaches to discourage search rank fraud in online systems. First, we detect fraud in real-time, when it is posted, and impose resource consuming penalties on the devices that post activities. We introduce and leverage several novel concepts that include (i) stateless, verifiable computational puzzles that impose minimal performance overhead, but enable the efficient verification of their authenticity, (ii) a real-time, graph based solution to assign fraud scores to user activities, and (iii) mechanisms to dynamically adjust puzzle difficulty levels based on fraud scores and the computational capabilities of devices. In a second approach, we introduce the problem of fraud de-anonymization: reveal the crowdsourcing site accounts of the people who post large amounts of fraud, thus their bank accounts, and provide compelling evidence of fraud to the users of products that they promote. We investigate the ability of our solutions to ensure that fraud does not pay off

    Advanced Topics in Systems Safety and Security

    Get PDF
    This book presents valuable research results in the challenging field of systems (cyber)security. It is a reprint of the Information (MDPI, Basel) - Special Issue (SI) on Advanced Topics in Systems Safety and Security. The competitive review process of MDPI journals guarantees the quality of the presented concepts and results. The SI comprises high-quality papers focused on cutting-edge research topics in cybersecurity of computer networks and industrial control systems. The contributions presented in this book are mainly the extended versions of selected papers presented at the 7th and the 8th editions of the International Workshop on Systems Safety and Security—IWSSS. These two editions took place in Romania in 2019 and respectively in 2020. In addition to the selected papers from IWSSS, the special issue includes other valuable and relevant contributions. The papers included in this reprint discuss various subjects ranging from cyberattack or criminal activities detection, evaluation of the attacker skills, modeling of the cyber-attacks, and mobile application security evaluation. Given this diversity of topics and the scientific level of papers, we consider this book a valuable reference for researchers in the security and safety of systems

    Cyber Security and Critical Infrastructures 2nd Volume

    Get PDF
    The second volume of the book contains the manuscripts that were accepted for publication in the MDPI Special Topic "Cyber Security and Critical Infrastructure" after a rigorous peer-review process. Authors from academia, government and industry contributed their innovative solutions, consistent with the interdisciplinary nature of cybersecurity. The book contains 16 articles, including an editorial that explains the current challenges, innovative solutions and real-world experiences that include critical infrastructure and 15 original papers that present state-of-the-art innovative solutions to attacks on critical systems

    On the adoption of end-user IT security measures

    Get PDF
    [no abstract
    corecore