279,687 research outputs found

    What is the probability of connecting two points ?

    Full text link
    The two-terminal reliability, known as the pair connectedness or connectivity function in percolation theory, may actually be expressed as a product of transfer matrices in which the probability of operation of each link and site is exactly taken into account. When link and site probabilities are pp and ρ\rho, it obeys an asymptotic power-law behavior, for which the scaling factor is the transfer matrix's eigenvalue of largest modulus. The location of the complex zeros of the two-terminal reliability polynomial exhibits structural transitions as 0ρ10 \leq \rho \leq 1.Comment: a few critical polynomials are at the end of the .tex source fil

    Return to the Poissonian City

    Full text link
    Consider the following random spatial network: in a large disk, construct a network using a stationary and isotropic Poisson line process of unit intensity. Connect pairs of points using the network, with initial / final segments of the connecting path formed by travelling off the network in the opposite direction to that of the destination / source. Suppose further that connections are established using "near-geodesics", constructed between pairs of points using the perimeter of the cell containing these two points and formed using only the Poisson lines not separating them. If each pair of points generates an infinitesimal amount of traffic divided equally between the two connecting near-geodesics, and if the Poisson line pattern is conditioned to contain a line through the centre, then what can be said about the total flow through the centre? In earlier work ("Geodesics and flows in a Poissonian city", Annals of Applied Probability, 21(3), 801--842, 2011) it was shown that a scaled version of this flow had asymptotic distribution given by the 4-volume of a region in 4-space, constructed using an improper anisotropic Poisson line process in an infinite planar strip. Here we construct a more amenable representation in terms of two "seminal curves" defined by the improper Poisson line process, and establish results which produce a framework for effective simulation from this distribution up to an L1 error which tends to zero with increasing computational effort.Comment: 11 pages, 2 figures Various minor edits, corrections to multiplicative constants in Theorem 5.1. Version 2: minor stylistic corrections, added acknowledgement of grant support. Version 3: three further minor corrections. This paper is due to appear in Journal of Applied Probability, Volume 51

    Two-Dimensional Scaling Limits via Marked Nonsimple Loops

    Full text link
    We postulate the existence of a natural Poissonian marking of the double (touching) points of SLE(6) and hence of the related continuum nonsimple loop process that describes macroscopic cluster boundaries in 2D critical percolation. We explain how these marked loops should yield continuum versions of near-critical percolation, dynamical percolation, minimal spanning trees and related plane filling curves, and invasion percolation. We show that this yields for some of the continuum objects a conformal covariance property that generalizes the conformal invariance of critical systems. It is an open problem to rigorously construct the continuum objects and to prove that they are indeed the scaling limits of the corresponding lattice objects.Comment: 25 pages, 5 figure

    Quantum Transitions Through Cosmological Singularities

    Full text link
    In a quantum theory of cosmology spacetime behaves classically only in limited patches of the configuration space on which the wave function of the universe is defined. Quantum transitions can connect classical evolution in different patches. Working in the saddle point approximation and in minisuperspace we compute quantum transitions connecting inflationary histories across a de Sitter like throat or a singularity. This supplies probabilities for how an inflating universe, when evolved backwards, transitions and branches into an ensemble of histories on the opposite side of a quantum bounce. Generalising our analysis to scalar potentials with negative regions we identify saddle points describing a quantum transition between a classically contracting, crunching ekpyrotic phase and an inflationary universe.Comment: 32 pages, 27 figure

    Percolation and isoperimetry on roughly transitive graphs

    Get PDF
    In this paper we study percolation on a roughly transitive graph G with polynomial growth and isoperimetric dimension larger than one. For these graphs we are able to prove that p_c < 1, or in other words, that there exists a percolation phase. The main results of the article work for both dependent and independent percolation processes, since they are based on a quite robust renormalization technique. When G is transitive, the fact that p_c < 1 was already known before. But even in that case our proof yields some new results and it is entirely probabilistic, not involving the use of Gromov's theorem on groups of polynomial growth. We finish the paper giving some examples of dependent percolation for which our results apply.Comment: 32 pages, 2 figure

    Tropical Geometry of Phylogenetic Tree Space: A Statistical Perspective

    Full text link
    Phylogenetic trees are the fundamental mathematical representation of evolutionary processes in biology. As data objects, they are characterized by the challenges associated with "big data," as well as the complication that their discrete geometric structure results in a non-Euclidean phylogenetic tree space, which poses computational and statistical limitations. We propose and study a novel framework to study sets of phylogenetic trees based on tropical geometry. In particular, we focus on characterizing our framework for statistical analyses of evolutionary biological processes represented by phylogenetic trees. Our setting exhibits analytic, geometric, and topological properties that are desirable for theoretical studies in probability and statistics, as well as increased computational efficiency over the current state-of-the-art. We demonstrate our approach on seasonal influenza data.Comment: 28 pages, 5 figures, 1 tabl
    corecore