403,248 research outputs found

    Building Embodied Conversational Agents:Observations on human nonverbal behaviour as a resource for the development of artificial characters

    Get PDF
    "Wow this is so cool!" This is what I most probably yelled, back in the 90s, when my first computer program on our MSX computer turned out to do exactly what I wanted it to do. The program contained the following instruction: COLOR 10(1.1) After hitting enter, it would change the screen color from light blue to dark yellow. A few years after that experience, Microsoft Windows was introduced. Windows came with an intuitive graphical user interface that was designed to allow all people, so also those who would not consider themselves to be experienced computer addicts, to interact with the computer. This was a major step forward in human-computer interaction, as from that point forward no complex programming skills were required anymore to perform such actions as adapting the screen color. Changing the background was just a matter of pointing the mouse to the desired color on a color palette. "Wow this is so cool!". This is what I shouted, again, 20 years later. This time my new smartphone successfully skipped to the next song on Spotify because I literally told my smartphone, with my voice, to do so. Being able to operate your smartphone with natural language through voice-control can be extremely handy, for instance when listening to music while showering. Again, the option to handle a computer with voice instructions turned out to be a significant optimization in human-computer interaction. From now on, computers could be instructed without the use of a screen, mouse or keyboard, and instead could operate successfully simply by telling the machine what to do. In other words, I have personally witnessed how, within only a few decades, the way people interact with computers has changed drastically, starting as a rather technical and abstract enterprise to becoming something that was both natural and intuitive, and did not require any advanced computer background. Accordingly, while computers used to be machines that could only be operated by technically-oriented individuals, they had gradually changed into devices that are part of many people’s household, just as much as a television, a vacuum cleaner or a microwave oven. The introduction of voice control is a significant feature of the newer generation of interfaces in the sense that these have become more "antropomorphic" and try to mimic the way people interact in daily life, where indeed the voice is a universally used device that humans exploit in their exchanges with others. The question then arises whether it would be possible to go even one step further, where people, like in science-fiction movies, interact with avatars or humanoid robots, whereby users can have a proper conversation with a computer-simulated human that is indistinguishable from a real human. An interaction with a human-like representation of a computer that behaves, talks and reacts like a real person would imply that the computer is able to not only produce and understand messages transmitted auditorily through the voice, but also could rely on the perception and generation of different forms of body language, such as facial expressions, gestures or body posture. At the time of writing, developments of this next step in human-computer interaction are in full swing, but the type of such interactions is still rather constrained when compared to the way humans have their exchanges with other humans. It is interesting to reflect on how such future humanmachine interactions may look like. When we consider other products that have been created in history, it sometimes is striking to see that some of these have been inspired by things that can be observed in our environment, yet at the same do not have to be exact copies of those phenomena. For instance, an airplane has wings just as birds, yet the wings of an airplane do not make those typical movements a bird would produce to fly. Moreover, an airplane has wheels, whereas a bird has legs. At the same time, an airplane has made it possible for a humans to cover long distances in a fast and smooth manner in a way that was unthinkable before it was invented. The example of the airplane shows how new technologies can have "unnatural" properties, but can nonetheless be very beneficial and impactful for human beings. This dissertation centers on this practical question of how virtual humans can be programmed to act more human-like. The four studies presented in this dissertation all have the equivalent underlying question of how parts of human behavior can be captured, such that computers can use it to become more human-like. Each study differs in method, perspective and specific questions, but they are all aimed to gain insights and directions that would help further push the computer developments of human-like behavior and investigate (the simulation of) human conversational behavior. The rest of this introductory chapter gives a general overview of virtual humans (also known as embodied conversational agents), their potential uses and the engineering challenges, followed by an overview of the four studies

    Building Embodied Conversational Agents:Observations on human nonverbal behaviour as a resource for the development of artificial characters

    Get PDF
    "Wow this is so cool!" This is what I most probably yelled, back in the 90s, when my first computer program on our MSX computer turned out to do exactly what I wanted it to do. The program contained the following instruction: COLOR 10(1.1) After hitting enter, it would change the screen color from light blue to dark yellow. A few years after that experience, Microsoft Windows was introduced. Windows came with an intuitive graphical user interface that was designed to allow all people, so also those who would not consider themselves to be experienced computer addicts, to interact with the computer. This was a major step forward in human-computer interaction, as from that point forward no complex programming skills were required anymore to perform such actions as adapting the screen color. Changing the background was just a matter of pointing the mouse to the desired color on a color palette. "Wow this is so cool!". This is what I shouted, again, 20 years later. This time my new smartphone successfully skipped to the next song on Spotify because I literally told my smartphone, with my voice, to do so. Being able to operate your smartphone with natural language through voice-control can be extremely handy, for instance when listening to music while showering. Again, the option to handle a computer with voice instructions turned out to be a significant optimization in human-computer interaction. From now on, computers could be instructed without the use of a screen, mouse or keyboard, and instead could operate successfully simply by telling the machine what to do. In other words, I have personally witnessed how, within only a few decades, the way people interact with computers has changed drastically, starting as a rather technical and abstract enterprise to becoming something that was both natural and intuitive, and did not require any advanced computer background. Accordingly, while computers used to be machines that could only be operated by technically-oriented individuals, they had gradually changed into devices that are part of many people’s household, just as much as a television, a vacuum cleaner or a microwave oven. The introduction of voice control is a significant feature of the newer generation of interfaces in the sense that these have become more "antropomorphic" and try to mimic the way people interact in daily life, where indeed the voice is a universally used device that humans exploit in their exchanges with others. The question then arises whether it would be possible to go even one step further, where people, like in science-fiction movies, interact with avatars or humanoid robots, whereby users can have a proper conversation with a computer-simulated human that is indistinguishable from a real human. An interaction with a human-like representation of a computer that behaves, talks and reacts like a real person would imply that the computer is able to not only produce and understand messages transmitted auditorily through the voice, but also could rely on the perception and generation of different forms of body language, such as facial expressions, gestures or body posture. At the time of writing, developments of this next step in human-computer interaction are in full swing, but the type of such interactions is still rather constrained when compared to the way humans have their exchanges with other humans. It is interesting to reflect on how such future humanmachine interactions may look like. When we consider other products that have been created in history, it sometimes is striking to see that some of these have been inspired by things that can be observed in our environment, yet at the same do not have to be exact copies of those phenomena. For instance, an airplane has wings just as birds, yet the wings of an airplane do not make those typical movements a bird would produce to fly. Moreover, an airplane has wheels, whereas a bird has legs. At the same time, an airplane has made it possible for a humans to cover long distances in a fast and smooth manner in a way that was unthinkable before it was invented. The example of the airplane shows how new technologies can have "unnatural" properties, but can nonetheless be very beneficial and impactful for human beings. This dissertation centers on this practical question of how virtual humans can be programmed to act more human-like. The four studies presented in this dissertation all have the equivalent underlying question of how parts of human behavior can be captured, such that computers can use it to become more human-like. Each study differs in method, perspective and specific questions, but they are all aimed to gain insights and directions that would help further push the computer developments of human-like behavior and investigate (the simulation of) human conversational behavior. The rest of this introductory chapter gives a general overview of virtual humans (also known as embodied conversational agents), their potential uses and the engineering challenges, followed by an overview of the four studies

    Conversational Agents, Humorous Act Construction, and Social Intelligence

    Get PDF
    Humans use humour to ease communication problems in human-human interaction and \ud in a similar way humour can be used to solve communication problems that arise\ud with human-computer interaction. We discuss the role of embodied conversational\ud agents in human-computer interaction and we have observations on the generation\ud of humorous acts and on the appropriateness of displaying them by embodied\ud conversational agents in order to smoothen, when necessary, their interactions\ud with a human partner. The humorous acts we consider are generated spontaneously.\ud They are the product of an appraisal of the conversational situation and the\ud possibility to generate a humorous act from the elements that make up this\ud conversational situation, in particular the interaction history of the\ud conversational partners

    Generating Natural Questions About an Image

    Full text link
    There has been an explosion of work in the vision & language community during the past few years from image captioning to video transcription, and answering questions about images. These tasks have focused on literal descriptions of the image. To move beyond the literal, we choose to explore how questions about an image are often directed at commonsense inference and the abstract events evoked by objects in the image. In this paper, we introduce the novel task of Visual Question Generation (VQG), where the system is tasked with asking a natural and engaging question when shown an image. We provide three datasets which cover a variety of images from object-centric to event-centric, with considerably more abstract training data than provided to state-of-the-art captioning systems thus far. We train and test several generative and retrieval models to tackle the task of VQG. Evaluation results show that while such models ask reasonable questions for a variety of images, there is still a wide gap with human performance which motivates further work on connecting images with commonsense knowledge and pragmatics. Our proposed task offers a new challenge to the community which we hope furthers interest in exploring deeper connections between vision & language.Comment: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistic
    • …
    corecore