4,487 research outputs found

    Geometric deep learning: going beyond Euclidean data

    Get PDF
    Many scientific fields study data with an underlying structure that is a non-Euclidean space. Some examples include social networks in computational social sciences, sensor networks in communications, functional networks in brain imaging, regulatory networks in genetics, and meshed surfaces in computer graphics. In many applications, such geometric data are large and complex (in the case of social networks, on the scale of billions), and are natural targets for machine learning techniques. In particular, we would like to use deep neural networks, which have recently proven to be powerful tools for a broad range of problems from computer vision, natural language processing, and audio analysis. However, these tools have been most successful on data with an underlying Euclidean or grid-like structure, and in cases where the invariances of these structures are built into networks used to model them. Geometric deep learning is an umbrella term for emerging techniques attempting to generalize (structured) deep neural models to non-Euclidean domains such as graphs and manifolds. The purpose of this paper is to overview different examples of geometric deep learning problems and present available solutions, key difficulties, applications, and future research directions in this nascent field

    Representations of molecules and materials for interpolation of quantum-mechanical simulations via machine learning

    No full text
    Computational study of molecules and materials from first principles is a cornerstone of physics, chemistry and materials science, but limited by the cost of accurate and precise simulations. In settings involving many simulations, machine learning can reduce these costs, sometimes by orders of magnitude, by interpolating between reference simulations. This requires representations that describe any molecule or material and support interpolation. We review, discuss and benchmark state-of-the-art representations and relations between them, including smooth overlap of atomic positions, many-body tensor representation, and symmetry functions. For this, we use a unified mathematical framework based on many-body functions, group averaging and tensor products, and compare energy predictions for organic molecules, binary alloys and Al-Ga-In sesquioxides in numerical experiments controlled for data distribution, regression method and hyper-parameter optimization

    How Feedback Can Improve Managerial Evaluations of Model-based Marketing Decision Support Systems

    Get PDF
    Marketing managers often provide much poorer evaluations of model-based marketing decision support systems (MDSSs) than are warranted by the objective performance of those systems. We show that a reason for this discrepant evaluation may be that MDSSs are often not designed to help users understand and internalize the underlying factors driving the MDSS results and related recommendations. Thus, there is likely to be a gap between a marketing manager’s mental model and the decision model embedded in the MDSS. We suggest that this gap is an important reason for the poor subjective evaluations of MDSSs, even when the MDSSs are of high objective quality, ultimately resulting in unreasonably low levels of MDSS adoption and use. We propose that to have impact, an MDSS should not only be of high objective quality, but should also help reduce any mental model-MDSS model gap. We evaluate two design characteristics that together lead model-users to update their mental models and reduce the mental model-MDSS gap, resulting in better MDSS evaluations: providing feedback on the upside potential for performance improvement and providing specific suggestions for corrective actions to better align the user's mental model with the MDSS. We hypothesize that, in tandem, these two types of MDSS feedback induce marketing managers to update their mental models, a process we call deep learning, whereas individually, these two types of feedback will have much smaller effects on deep learning. We validate our framework in an experimental setting, using a realistic MDSS in the context of a direct marketing decision problem. We then discuss how our findings can lead to design improvements and better returns on investments in MDSSs such as CRM systems, Revenue Management systems, pricing decision support systems, and the like.Learning;Feedback;Marketing Decision Models;Marketing Decision Support Systems;Marketing Information Systems

    Active and Passive Causal Inference Learning

    Full text link
    This paper serves as a starting point for machine learning researchers, engineers and students who are interested in but not yet familiar with causal inference. We start by laying out an important set of assumptions that are collectively needed for causal identification, such as exchangeability, positivity, consistency and the absence of interference. From these assumptions, we build out a set of important causal inference techniques, which we do so by categorizing them into two buckets; active and passive approaches. We describe and discuss randomized controlled trials and bandit-based approaches from the active category. We then describe classical approaches, such as matching and inverse probability weighting, in the passive category, followed by more recent deep learning based algorithms. By finishing the paper with some of the missing aspects of causal inference from this paper, such as collider biases, we expect this paper to provide readers with a diverse set of starting points for further reading and research in causal inference and discovery
    • …
    corecore